Geochemical and isotopic (oxygen, hydrogen, carbon, strontium) constraints for the origin, salinity, and residence time of groundwater from a carbonate aquifer in the Western Anti-Atlas Mountains, Morocco

Citation

Material Information

Title:
Geochemical and isotopic (oxygen, hydrogen, carbon, strontium) constraints for the origin, salinity, and residence time of groundwater from a carbonate aquifer in the Western Anti-Atlas Mountains, Morocco
Series Title:
Journal of Hydrology
Creator:
Ettayfi, N.
Bouchaou, L.
Michelot, J.L.
Tagma, T.
Warner, N.
Boutaleb, S.
Massault, M.
Lgourna, Z.
Vengosh, A.
Publication Date:
Language:
English

Subjects

Subjects / Keywords:
Isotopes ( local )
Geochemistry ( local )
Groundwater ( local )
Salinity ( local )
Residence Time ( local )
Semi-Arid ( local )
Genre:
serial ( sobekcm )

Notes

Abstract:
Groundwater in many arid basins, particularly in developing countries, is the only available water resource that sustains local communities. Yet, information on the basic hydrological parameters and the sustainability of the groundwater exploitation are often lacking. This study investigates the origin of groundwater from the Lower Cambrian carbonate aquifer of the Lakhssas Plateau in the Anti-Atlas Mountains of southwestern Morocco. The study aims to reveal the origin of the groundwater, salinity sources, and the residence time of the water. The study is based on a comprehensive geochemical and isotopic (oxygen, hydrogen, carbon, and strontium) investigation of groundwater from different parts of the basin. The hydrochemical and isotopes results indicated three types of groundwater in the Lakhssas Plateau: (1) thermal water in the southern part of the basin with solute composition that reflects dissolution of calcium–sulfate and calcium carbonate minerals; (2) low-temperature groundwater at the southern margin of the basin with low salinity (chloride content up to 100 mg/L) and chemical composition that is expected from equilibrium with limestone–dolomite rocks; and (3) low-temperature groundwater in the northern, western, and eastern margins of the basin with a wide range of salinity (chloride up to 800 mg/L). The different water types had also different stable isotope composition; the thermal water was depleted in 18O and 2H (δ18O as low as −7.6‰) relative to the southern (−5.9 to −5.3‰) and northern waters (−5.7 to −3.8‰). The differences in δ18O and δ2H between the southern and northern waters are related to elevation that induced fractionation of oxygen and hydrogen isotopes in recharge water originated from coastal moisture. The data suggest that the high salinity in groundwater from the northern, western and eastern margins of the Lakhssas Plateau is related to the presence of schist rocks in these areas. The distinctive low Na/Cl and Br/Cl ratios, coupled with high silica contents and high 87Sr/86Sr rati
Original Version:
Journal of Hydrology, Vol. 438-439 (2012-05-17).

Record Information

Source Institution:
University of South Florida Library
Holding Location:
University of South Florida
Rights Management:
This object is protected by copyright, and is made available here for research and educational purposes. Permission to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to copyright law must be obtained from the copyright holder.

USFLDC Membership

Aggregations:
University of South Florida
Karst Information Portal

Postcard Information

Format:
serial

printinsert_linkshareget_appmore_horiz

Download Options

close

No images or PDF downloads are available for this resource.


Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.