An emerging disease causes regional population collapse of a common North American bat species


previous item | next item

Citation

Material Information

Title:
An emerging disease causes regional population collapse of a common North American bat species
Series Title:
Science
Creator:
Frick, Winifred F.
Pollock, Jacob F.
Hicks, Alan C.
Langwig, Kate E.
Reynolds, D. Scott
Turner, Gregory G.
Butchkoski, Calvin M.
Kunz, Thomas H.
Publisher:
American Academy for the Advancement of Science
Publication Date:
Physical Description:
1 online resource

Subjects

Subjects / Keywords:
White-nose syndrome ( lcsh )
Bats ( lcsh )
Genre:
serial ( sobekcm )

Notes

Abstract:
White-nose syndrome (WNS) is an emerging disease affecting hibernating bats in eastern North America that causes mass mortality and precipitous population declines in winter hibernacula. First discovered in 2006 in New York State, WNS is spreading rapidly across eastern North America and currently affects seven species. Mortality associated with WNS is causing a regional population collapse and is predicted to lead to regional extinction of the little brown myotis (Myotis lucifugus), previously one of the most common bat species in North America. Novel diseases can have serious impacts on naïve wildlife populations, which in turn can have substantial impacts on ecosystem integrity.
Original Version:
Volume 329, Issue 5992
General Note:
5 p.

Record Information

Source Institution:
University of South Florida
Holding Location:
University of South Florida
Rights Management:
All applicable rights reserved by the source institution and holding location.
Resource Identifier:
K26-05607 ( USFLDC DOI )
k26-5607 ( USFLDC Handle )

USFLDC Membership

Aggregations:
University of South Florida
Karst Information Portal

Postcard Information

Format:
serial

Downloads

This item is only available as the following downloads:


Full Text

PAGE 1

criticaltotesttheefficac yofspecificdiseasepreventionstrategiesappliednotonlywithindonor andrecipientcommunities,butalsointherealm wheretheyintersect.ReferencesandNotes1.J.O.Lloyd-Smith etal ., Science 326 ,1362 (2009). 2.C.E.Rupprecht,C.A.Hanlon,T.Hemachudha, Lancet Infect.Dis. 2 ,327(2002). 3.V.P.Hsu etal ., Emerg.Infect.Dis. 10 ,2082 (2004). 4.S.Riley etal ., Science 300 ,1961(2003). 5.A.Moya,E.C.Holmes,F.Gonzlez-Candelas, Nat.Rev. Microbiol. 2 ,279(2004). 6.M.Anishchenko etal ., Proc.Natl.Acad.Sci.U.S.A. 103 , 4994(2006). 7.H.D.Song etal ., Proc.Natl.Acad.Sci.U.S.A. 102 ,2430 (2005). 8.C.R.Parrish etal ., Microbiol.Mol.Biol.Rev. 72 ,457 (2008). 9.T.Kuiken etal ., Science 312 ,394(2006). 10.J.D.Blanton,K.Robertson,D.Palmer,C.E.Rupprecht, J.Am.Vet.Med.Assoc. 235 ,676(2009). 11.D.A.Brass,in RabiesinBats:NaturalHistoryandPublic HealthImplications ,D.A.Brass,Ed.(LiviaPress, Ridgefield,CT,1994),pp.151 – 162. 12.J.S.Smith,L.A.Orciari,P.A.Yager, Semin.Virol. 6 ,387 (1995). 13.G.J.Hughes,L.A.Orciari,C.E.Rupprecht, J.Gen.Virol. 86 ,1467(2005). 14.O.R.P.Bininda-Emonds etal ., Nature 446 ,507 (2007). 15.Materialsandmethodsareavailableassupporting materialon Science Online. 16.D.M.deVienne,M.E.Hood,T.Giraud, J.Evol.Biol. 22 , 2532(2009). 17.G.S.Gilbert,C.O.Webb, Proc.Natl.Acad.Sci.U.S.A. 104 ,4979(2007). 18.T.J.Davies,A.B.Pedersen, Proc.Biol.Sci. 275 ,1695 (2008). 19.G.M.Baer,J.H.Shaddock,R.Quirion,T.V.Dam, T.L.Lentz, Lancet 335 ,664(1990). 20.S.Finke,K.K.Conzelmann, VirusRes. 111 ,120 (2005). 21.Forhelpfuldiscussionandcomments,wethankP.Beerli, J.Davies,S.Altizer,A.Park,P.Rohani,J.Allgeier, B.Han,P.Stephens,andthreeanonymousreviewers. Forcontributingrabidbats,wethanktheArizonaState PublicHealthLaboratory,theCaliforniaDepartmentof PublicHealth,theGeorgiaDepartmentofCommunity Health,theFloridaDepartmentofHealth,theIdaho DepartmentofHealthandWelfare,theIndianaState DepartmentofHealth,theUniversityofIowa ’ sUniversity HygienicLaboratory,theMississippiStateDepartment ofHealth,theNewJerseyDepartmentofHealthand SeniorServices,theTennesseeDepartmentofHealth, theTexasDepartmentofStateHealthServices,the VirginiaConsolidatedLaboratory,andtheWashington StateDepartmentofHealth.Forprovidingmuseumvoucheredbattissues,wethanktheAngeloStateNatural HistoryCollection,theCarnegieMuseumofNatural History,theCentrodeInvestigacionesBiolgicasdel Noroeste,theLouisianaStateUniversityMuseumof NaturalScience,theMuseumofVertebrateZoology,the U.S.NationalMuseumofNaturalHistory,theRoyal OntarioMuseum,andtheUniversityofAlaskaMuseum. Thesequencesgeneratedinthisstudycanbefoundat GenBankunderaccessionnumbersGU644641to GU645012andGU722925toGU723257(tableS1). ThisworkwassupportedbyAssociationofPublicHealth Laboratories/CentersforDiseaseControlEmerging InfectiousDiseasesandNSFGraduateResearch FellowshipstoD.G.S.,NSF-NIHEcologyofInfectious Diseasegrant0430418toG.F.M.,andfundingfrom theU.S.ArmyEngineerResearchDevelopment Center – ConstructionEngineeringResearchLaboratory andWesternMichiganUniversitytoM.J.V.SupportingOnlineMaterialwww.sciencemag.org/cgi/content/full/329/5992/676/DC1 MaterialsandMethods SOMText Fig.S1 TablesS1toS9 References 26February2010;accepted10June2010 10.1126/science.1188836AnEmergingDiseaseCausesRegional PopulationCollapseofaCommon NorthAmericanBatSpeciesWinifredF.Frick,1,2* JacobF.Pollock,3AlanC.Hicks,4KateE.Langwig,4,1D.ScottReynolds,5,1GregoryG.Turner,6CalvinM.Butchkoski,6ThomasH.Kunz1White-nosesyndrome(WNS)isanemergingdiseaseaffectinghibernatingbatsineastern NorthAmericathatcausesmassmortalityandprecipitouspopulationdeclinesinwinter hibernacula.Firstdiscoveredin2006inNewYorkState,WNSisspreadingrapidlyacrosseastern NorthAmericaandcurrentlyaffectssevenspecies.MortalityassociatedwithWNSiscausinga regionalpopulationcollapseandispredictedtoleadtoregionalextinctionofthelittlebrown myotis( Myotislucifugus ),previouslyoneofthemostcommonbatspeciesinNorthAmerica.Novel diseasescanhaveseriousimpactsonnavewildlifepopulations,whichinturncanhavesubstantial impactsonecosystemintegrity.Emerginginfectiousdiseasesareincreasinglyrecognizedasdirectandindirect agentsofextinctionoffree-rangingwildlife( 1 – 4 ).Introductionsofdiseaseintonave wildlifepopulationshaveledtoseriousdeclines orlocalextinctionsofdifferentspeciesinthe pastfewdecades,includingamphibiansfrom chytridiomycosis( 5 , 6 ),rabbitsfrommyxomatosis intheUnitedKingdom( 7 ),Tasmaniandevilsfrom infectiouscancer( 3 ),andbirdsinNorthAmerica fromWestNilevirus( 8 ).Herewedemonstrate thatwhite-nosesyndrome(WNS),anemerging infectiousdisease,iscausingunprecedentedmortalityamonghibernatingbatsineasternNorth Americaandhascausedapopulationcollapse thatisthreateningregionalextinctionofthelittle brownmyotis( Myotislucifugus),aoncewidespread andcommonbatspecies. WNSisassociatedwithanewlydescribed psychrophilicfungus(Geomycesdestructans )that growsonexposedtissuesofhibernatingbats, apparentlycausingprematurearousals,aberrant behavior,andprematurelossofcriticalfatreserves( 9 , 10)(Fig.1).TheoriginofWNSand itsputativepathogen, G.destructans ,isuncertain( 9 ).Aplausiblehypothesisfortheorigin ofthisdiseaseinNorthAmericaisintroduction viahumantradeortravelfromEurope,basedon recentevidencethat G.destructans hasbeen observedonatleastonehibernatingbatspecies inEurope( 11 ).Anthropogenicspreadofinvasive pathogensinwildlifeanddomesticanimal populations,so-calledpathogenpollution,poses substantialthreatstobiodiversityandecosystem integrityandisofmajorconcerninconservation efforts( 1 , 2 ). WNShasspreadrapidlyandnowoccurs throughoutthenortheasternandmid-Atlantic regionsintheUnitedStatesandinOntarioand QubecprovincesinCanadaandcurrentlyaffects atleastsevenspeciesofhibernatingbats(Fig.2). ManyspeciesofbatsintemperateNorthAmerica hibernateincavesandmines( 12 )inaggregations ofuptohalfamillionindividualsinasinglecave ( 13).Inlatespring,thesewinteraggregationstypicallydisperseintosmallersex-segregatedgroups ofconspecifics,whenadultfemalesformmaternitycoloniesandadultmalesmostlyroostalone ( 14, 15).FromAugusttoOctober,femalesand malesassembleathibernaculaorswarmingsites tomatebeforehibernating( 16 , 17).Themechanismsforthepersistenceandtransmissionof G. destructans duringsummerandfallmonthsare unknown,butspreadofthefungustonewgeographicregionsandtootherspeciesmayresult fromsocialandspatialmixingofindividualsacross spaceandtime. Duringthepast4years,WNShasbeenconfirmedinatleast115bathibernaculainthe UnitedStatesandCanadaandhasspreadover 1200kmfromHoweCavenearAlbany,New York,whereitwasfirstobservedinFebruary 1CenterforEcologyandConserv ationBiology(CECB),DepartmentofBiology,BostonUniversity,5CummingtonStreet, Boston,MA02215,USA.2DepartmentofEnvironmentalStudies, UniversityofCaliforniaSantaCruz,1156HighStreet,SantaCruz, CA95064,USA.3DepartmentofEcologyandEvolutionary Biology,UniversityofCaliforn iaSantaCruz,1156HighStreet, SantaCruz,CA95064,USA.4EndangeredSpeciesUnit,New YorkStateDepartmentofEnvir onmentalConservation,625 Broadway,Albany,NY12233,USA.5St.Paul ’ sSchool,Concord, NH03301,USA.6WildlifeDiversityDivision,PennsylvaniaGame Commission,2001EmertonAv enue,Harrisburg,PA16669,USA. *Towhomcorrespondenceshouldbeaddressed.E-mail: wfrick@batresearch.orgwww.sciencemag.org SCIENCE VOL3296AUGUST2010679REPORTS on September 25, 2019 http://science.sciencemag.org/ Downloaded from

PAGE 2

2006( 9 )(Fig.2).Decreasesinbatsatinfected hibernacularangefrom30to99%annually,with aregionalmeanof73%,andallsurveyedsites havebecomeinfectedwithin2yearsofthediseasearrivingintheirregion(Fig.3,AtoC).Such sharpdeclinesandrapidspreadraiseseriousconcernsabouttheimpactofWNSonthepopulation viabilityofaffectedbatspecies. Weinvestigatedtheimpactsofdiseaseassociatedmortalityontheregionalpopulationof littlebrownmyotisinthenortheasternUnited Statesbycomparingtrendsinpre-andpost-WNS populationsandsimulating100yearsofpost-WNS populationdynamicstoassesstheconsequences oftheintroductionofthediseaseforbatpopulationviability(18 ).Weusedapopulationmatrix modelparameterizedwithsurvivalandbreeding probabilitiesestimatedfrom16years(1993 – 2008) ofmarkandrecapturedataatamaternitysiteof littlebrownmyotis( 19)toestimatepopulation growthbeforeWNS(tableS1).Wealsocalculatedgeometricmeangrowthratesfromwinter countsurveysofthisspeciesconductedoverthe past30yearsat22hibernacularangingacross fivestatesinthenortheasternUnitedStatesto determineregionalpopulationtrendsbeforethe emergenceofWNS(tableS2). Deterministicpopulationgrowthcalculated fromthepopulationmatrixmodelofmeanvital rateswaspositive[yearlypopulationgrowthrate ( l )=1.008],demonstratingthatpopulationgrowth wasstableorincreasingbeforetheemergenceof WNS.Estimatesoflong-termgrowthratesover thepast30yearsindicatethat86%ofhibernacula ( n =19outof22)hadstableorincreasingpopulations( l =>1).Regionalmeangrowthequaled 1.07(range:0.98to1.2)(tableS2),suggesting thattheregionalpopulationwasgrowingbefore WNSandthatvitalratesestimatedfromthe maternitysiterepresentregionalpatterns.The growthofhibernatingpopulationsoverthepast 30yearsmaybeinresponsetoconservationmeasures,suchasprotectivegatingofminesand caves( 20),theinstallationofbathouses(21 ),and thepotentialameliorationofimpactsfrompesticidesbannedinthe1970s( 22). Toassesstheimpactofdisease-relatedmortalityonpopulationviability,wesimulatedpopulationdynamicsusingastochasticpopulation modelthatincludeddemographicdatafromboth infectedandsusceptible(uninfected)populations( 18 ).Weperformed1000simulationsof 100yearsofgrowthfromastartingpopulation of6.5millionbats,usingmeans,variances,and correlationsfromvitalrates( 19 )thatincorporated environmentalvariability( 23).Theprobabilityof extinctionforeachyearwasdefinedastheproportionof1000runsforwhichthesimulated populationdroppedbelowaquasi-extinction thresholdduringthatyear.Quasi-extinctionwas specifiedas0.01%ofthestartingpopulation(that is,650bats).Definingextinctionthresholdsat lowpopulationsizesaccountsforprocessessuch asdemographicstochasticityandpotentialAllee effects( 23 – 26). Inthesimulationmodel,thesusceptible populationretainedpre-WNSvitalratesestimatedfromthe16-yearmarkandrecapture data( 19 ),andinfectedpopulationsweregiven vitalratesassociatedwithannualdeclinescalculatedfrominfectedhibernaculawhereconsecutiveyearlycountswereavailable( n =22) (18 ).TheincreaseofprevalenceofWNSwas estimatedasthepercentageofuninfectedhibernaculathatbecameinfectedeachyear(2007, 5%;2008,49%;2009,59%)andwasincorporatedintothesimulationastheproportionof thesusceptiblepopulationthatbecomesinfected eachyear. Becauseoftheinherentuncertaintyinpredictingthedynamicsofarecentlyemergentdisease, weevaluatedthepotentialfordiseasefadeout anditsinfluenceonpopulationviability.Weestimatedannualdeclinesforeachof3yearsafter infectionandconstructednineapriorimodelsto testhypothesesregardingtheinfluenceofdensityandtimesinceinfectiononpopulationgrowth ratesatinfectedhibernacula(tableS3).Fromthese estimates,thereislittleevidenceofdensitydependentdeclines,althoughmodelresultssuggestthattherateofdeclineameliorateswiththe timesinceinfection(Fig.3DandtableS3).To incorporatethistimeameliorationeffectintothe simulationmodel,weusedpredictedvaluesof populationgrowthfromanonlinearmodel[ l = 1 1.16exp( – 0.31 t ),where t =yearssince infection]foreachof16yearsafterinfection, whenpredictedpopulationgrowthstabilized( l = 1)(Fig.3D). Wesimulatedpopulationgrowthforfive scenariosrelatedtothistimeameliorationeffect,includingdeclinesamelioratedaccording topredictedvalues(Fig.3D)ateachyearly timestepandthatpersistedat45%(3rd-year actualmean),20%(6th-yearpredictedmean), 10%(8th-yearpredictedmean),5%(10th-year predictedmean),and2%(13th-yearpredicted mean)peryear(Fig.4).Bycomparingthe probabilitiesofextinctionover100yearsfor thesefivescenarios,weevaluatedthevulnerabilityoftheregionalpopulationtoextinction, Fig.1. ( A )Photographofhibernatinglittlebrownmyotis infectedwithWNS.Whitefungusisvisibleon wings,ears,muzzle,andotherexposedskintissues.[Photo:RyanVonLinden]( B )Batcarcassespiledon acavefloor,illustratingmassmortalityathiber naculainfectedwithWNS.[Photo:AlanHicks]( C )Skulls, bones,anddecomposedcarcassescoveringthecaveflooraftermultipleyearsofinfection.[Photo: MarianneMoore] 6AUGUST2010VOL329 SCIENCE www.sciencemag.org680REPORTS on September 25, 2019 http://science.sciencemag.org/ Downloaded from

PAGE 3

giventheuncertaintyinhowdeclinesfrom diseasemortalitymaypersistinthefuture. Usingvitalratesderivedfrommeandeclines inthefirst3yearsofinfectionandpersistingat theobservedthird-yearmeandeclineof45% peryearthereafter(Fig.3D),weexpecta99% chanceofregionalextinctionoflittlebrown myotiswithinthenext16years(Fig.4A).Ifdeclinescontinuetoamelioratewithtimesinceinfection,timelinestoprobableextinctionlengthen butremaingreaterthan90%by65years,evenif declinesameliorateandstabilizeat10%peryear (Fig.4A).Modelresultsindicatethatannual declinesfromWNSwouldhavetoameliorateto lessthan5%peryeartosignificantlyreducethe chanceofextinctionover100years(Fig.4A). Evenifdiseasemortalitylessensovertime,the regionalpopulationisexpectedtocollapsefrom anestimatedstartingpopulationof6.5millionbats tofewerthan65,000(1%ofthepre-WNSpopulation)inlessthan20years(Fig.4B). Ourresultspaintagrimpictureofaoncehealthypopulationofanabundantandwidelydistributedspeciesnowexperiencingunprecedented lossesfromWNSandfacingaseriousthreatof regionalextinctionwithinthenext16years(Fig. 4).Suchaseverepopulationdecline,especially ifthediseasespreadsfarthersouthandwestof itscurrentdistributionineasternNorthAmerica, mayresultinunpredictablechangesinecosystem Fig.3. ( A to C )Populationtrendsoflittlebrown myotisoverthepast30yearsat(A)small(<1500 bats),(B)medium(<5000bats),and(C)large (>5000bats)hibernatingcoloniesinthenortheasternUnitedStates.Solidlinesrepresentsites withbatsinfectedwithWNS;dottedlinesrepresent uninfectedsites.HibernaculainfectedwithWNS experiencedasignificantreductioninnumbersas comparedtothelowestavailablecountfromthepast 30years(Wilcoxontest=190; P <0.002).Large decreasesinwintercountsatafewhibernaculainthe mid-1990swererelatedt owinterfloodevents.( D ) Populationgrowth( l )athibernacula(blackcircles) byyearsinceinfection.Thecurvedfittedlinerepresentsthenonlineartime-dependentmodel,showing ameliorationofmortalityfromWNSuntilpopulation growthreachesequilibriumat l =1in16years sincethefirstyearofinfection(verticaldottedline). Thehockey-sticklinerepresentsdeclinesfromWNS persistingatthethird-yearmeanof45%peryear, afterafirst-yeardeclineof85%andasecond-year declineof62%. 5,000 10,000 15,000 20,000 25,000 30,000198519901995200020052010 Winter count Winter countWNS200 400 600 800 1,000 1,2001980198519901995200020052010WNSC A1,000 2,000 3,000 4,0001980198519901995200020052010WNSBWinter countYear510 15 200.0 0.2 0.4 0.6 0.8 1.0 Year of infectionPopulation growth ()D INTEREST AREA OF2010 (Likely) 2010 2009 (Likely) 2009 2008 2007 2006by County/DistrictWhite Nose Syndrome0 250 500Kilometers Fig.2. MapofcurrentdistributionandspreadofWNSacrosseasternNorthAmerica. www.sciencemag.org SCIENCE VOL3296AUGUST2010681REPORTS on September 25, 2019 http://science.sciencemag.org/ Downloaded from

PAGE 4

structureandfunction( 27, 28).TherapidgeographicspreadofWNSsince2006,coupled withtheseverityandrapidityofpopulationdeclines,supportthehypothesisofintroductionof anovelpathogenintoanavepopulationanddemonstratetheseriousnessofpathogenpollutionas aconservationissue( 1 ).Ouranalysisfocused onlittlebrownmyotisinthenortheasternUnited States,butseveralotherbatspeciesareexperiencingsimilarmortalityfromWNSandmayalso beatsignificantriskofpopulationcollapseor extinction.Thisrapiddeclineofacommonbat speciesfromWNSdrawsattentiontotheneed forincreasedresearch,monitoring,andmanagementtobetterunderstandandcombatthisinvasivewildlifedisease( 1 ).ReferencesandNotes1.P.Daszak,A.A.Cunningham,A.D.Hyatt, Science 287 , 443(2000). 2.H.McCallum,A.Dobson, TrendsEcol.Evol. 10,190(1995). 3.H.McCallum, TrendsEcol.Evol. 23 ,631(2008). 4.A.M.Kilpatrick,C.J.Briggs,P.Daszak, TrendsEcol.Evol. 25 ,109(2010). 5.L.Berger etal ., Proc.Natl.Acad.Sci.U.S.A. 95 ,9031 (1998). 6.K.R.Lips etal ., Proc.Natl.Acad.Sci.U.S.A. 103 ,3165 (2006). 7.F.Fenner, FEMSMicrobiol.Rev. 24 ,123(2000). 8.S.L.LaDeau,A.M.Kilpatrick,P.P.Marra, Nature 447 , 710(2007). 9.D.S.Blehert etal ., Science 323 ,227(2009). 10.A.Gargas,M.T.Trest,M.Christensen,T.J.Volk, D.S.Bleher, Mycotaxon 108 ,147(2009). 11.S.J.Puechmaille etal ., Emerg.Infect.Dis. 16,290(2010). 12.T.J.O'Shea,M.A.Bogan, MonitoringTrendsinBat PopulationsoftheUnitedStatesandTerritories:Problems andProspects (BiologicalResourcesDiscipline,Information andTechnologyReportUSGS/BRD/ITR-2003-003, U.S.GeologicalSurvey,Washington,DC,2003). 13.R.Barbour,W.Davis, BatsofAmerica (Univ.Pressof Kentucky,Lexington,KY,USA,1969). 14.T.H.Kunz,L.F.Lumsden,in BatEcology, T.H.Kunz, M.B.Fenton,Eds.(Univ.ofChicagoPress,Chicago,IL, 2003),pp.3 – 89. 15.T.H.Kunz,D.S.Reynolds,in( 12),pp.9 – 20. 16.W.H.Davis,H.B.Hitchcock, J.Mammal. 46,296(1965). 17.D.W.Thomas,M.B.Fenton,R.M.R.Barclay, Behav.Ecol.Sociobiol. 6 ,129(1979). 18.Informationonmaterialsandmethodsisavailableon Science Online. 19.W.F.Frick,D.S.Reynolds,T.H.Kunz, J.Anim.Ecol. 79 , 128(2010). 20.E.T.Posluszny,C.Butchkoski,in ProceedingsofBat ConservationandMining:ATechnicalInteractiveForum (BatConservationInternationalandU.S.Departmentof theInterior,OfficeofSurfaceMining,St.Louis,MO, 2000),pp.159 – 168. 21.M.D.Tuttle,D.Hensley, Bats 11 ,3(1993). 22.K.N.Geluso,J.S.Altenbach,D.E.Wilson, Science 194 , 184(1976). 23.W.F.Morris,D.F.Doak, QuantitativeConservation Biology:TheoryandPracticeofPopulationViability Analysis (Sinauer,Sunderland,MA,2002). 24.F.Courchamp,T.Clutton-Brock,B.Grenfell, TrendsEcol.Evol. 14,405(1999). 25.P.A.Stephens,W.J.Sutherland, TrendsEcol.Evol. 14 , 401(1999). 26.F.Courchamp,B.Grenfell,T.Clutton-Brock, Proc.Biol.Sci. 266,557(1999). 27.K.J.Gaston, Science 327 ,154(2010). 28.G.W.Luck,G.C.Daily,P.R.Ehrlich, TrendsEcol.Evol. 18 ,331(2003). 29.FundingwasprovidedbygrantsfromtheU.S.Fishand WildlifeService(USFWS)toW.F.F.,J.F.P.,D.S.R.,T.H.K.,and G.G.T.Wethankthreeanonymousreviewers,J.P.Hayes, andD.F.DoakforhelpfulreviewsandA.M.Kilpatrickfor fruitfuldiscussion.Fundingforwintercountsofbatsat hibernaculawasprovidedbyUSFWSSection6andState WildlifeGrantsissuedtothePennsylvaniaGame Commission,andbyFederalAidinWildlifeRestoration GrantWE-173-GissuedtotheNewYorkStateDepartment ofEnvironmentalConservation.Countdatafromhibernating colonieswerekindlyprovidedbytheConnecticutDepartment ofEnvironmentalProtection;thePennsylvaniaGame Commission;theNewYorkDepartmentofEnvironmental Conservation;VermontFishandGame;theMassachusetts DivisionofFisheriesandWildlife;andK.Berner,State UniversityofNewYorkatCobleskill.Wearegratefultothe manyindividualswhowereinvolvedinconductingannual countsofbatsathibernaculaoverthepast30years.Data areavailableuponrequestfromtheauthors.SupportingOnlineMaterialwww.sciencemag.org/cgi/content/full/329/5992/679/DC1 MaterialsandMethods Figs.S1andS2 TablesS1toS3 References 22February2010;accepted24May2010 10.1126/science.1188594Sex-SpecificParent-of-OriginAllelic ExpressionintheMouseBrainChristopherGregg,1,2JiangwenZhang,3JamesE.Butler,1,2DavidHaig,4CatherineDulac1,2* Genomicimprintingresultsinpreferentialgeneexpressionfrompaternallyversusmaternally inheritedchromosomes.Weusedagenome-wideapproachtouncoversex-specificparent-of-origin alleliceffectsintheadultmousebrain.Ourstudyidentifiedpreferentialselectionofthematernally inheritedXchromosomeinglutamatergicneuronsofthefemalecortex.Moreover,analysisofthe cortexandhypothalamusidentified347autosomalgeneswithsex-specificimprintingfeatures.In thehypothalamus,sex-specificimprintedgenesweremostlyfoundinfemales,whichsuggests parentalinfluenceoverthehypothalamicfunctionofdaughters.Weshowthat interleukin-18 ,a genelinkedtodiseaseswithsex-specificprevalence,issubjecttocomplex,regional,and sex-specificparentaleffectsinthebrain.Parent-of-origineffectsthusprovidenewavenuesfor investigationofsexualdimorphisminbrainfunctionanddisease.Genomicimprintingisanepigeneticmode ofgeneregulationinvolvingpreferential expressionofthepaternallyormaternallyinheritedallele( 1 ).Sexualdimorphismisa centralcharacteristicofmammalianbrainfunctionandbehaviorthatinfluencesmajorneurologicaldiseasesinhumans( 2 ).Hereweaddress thepotentialexistenceofdifferentialgenomic imprintinginthebrainaccordingtothesexof individuals.Imprintingreferstogeneexpression differencesbetweenmaternalandpaternalchromosomes( 3 )andisalsousedmorestrictlyto definecompleteallele-specificsilencing(4 ).Our analysisencompassessexdifferencesinparent1DepartmentofMolecularandCellularBiology,Harvard University,Cambridge,MA02138,USA.2HowardHughes MedicalInstitute,HarvardUniversity,Cambridge,MA02 138, USA.3FASResearchComputing,HarvardUniversity,Cambridge, MA02138,USA.4DepartmentofOrganismicandEvolutionary Biology,HarvardUniversity,Cambridge,MA02138,USA. *Towhomcorrespondenceshouldbeaddressed.E-mail: dulac@fas.harvard.edu 0.0 0.2 0.4 0.6 0.8 1.0 20406080100 Cumulative probability of extinction 0 50,000 100,000 150,000 200,000 250,000 20406080100 45% 20% 10% 5% 2% 6,500,000 Regional population sizeYears into future A B Fig.4. (A )Cumulativeprobabilityofregional extinctionoflittlebrownmyotisforfivescenariosoftime-dependentameliorationofdisease mortalityfromWNS,basedonmatrixmodel simulationresults.Eachscenariorepresentspredictedtime-dependentdeclinesforaspecified numberofyearsafterinfectionandthenholds thedeclinerateconstantateither45,20,10,5, or2%todemonstratetheimpactofameliorationontheprobabilityofextinctionoverthe next100years.( B )Populationsizeineachyear averagedacross1000simulationsforeachof thefivescenariosoftime-dependentameliorationofmortalityfromWNS. 6AUGUST2010VOL329 SCIENCE www.sciencemag.org682REPORTS on September 25, 2019 http://science.sciencemag.org/ Downloaded from

PAGE 5

Species An Emerging Disease Causes Regional Population Collapse of a Common North American Bat Butchkoski and Thomas H. Kunz Winifred F. Frick, Jacob F. Pollock, Alan C. Hicks, Kate E. Langwig, D. Scott Reynolds, Gregory G. Turner, Calvin M. DOI: 10.1126/science.1188594 (5992), 679-682. 329 Science costs of agricultural pest control. economic scale of loss of an insectivorous mammal is expected to have repercussions for ecosystem integrity and for the white-nose syndrome, the once abundant little brown bat is heading for regional extinction in the next 16 years or so. This population data collected on bats in the northeastern United States for the past 30 years and show that, mainly owing to (p. 679) have analyzed et al. Frick makes them exhaust their fat reserves, resulting in the death of over a million bats. the animals in a hibernating colony. The infection makes bats restless over winter when they should be dormant, which infection of bats, has, over the past 3 years, spread from upstate New York to West Virginia, killing on average 70% of barriers, which inhibit the onward transmission of rabies virus into a new species. White-nose syndrome, an exotic fungal that although rabies viruses have the potential for rapid evolution, this property alone is not enough to overcome genetic (p. 676, see the cover) show that rabies virus lineages tend to be specific for bat lineages. It seems et al. Streicker virus. human rabies in the Americas. But rabies is not generally transmitted among people; humans are a dead end for the ). For example, exposure to bats is the main source of Daszak implications for human health (see the Perspective by Bats appear to be able to host an assortment of alarming pathogens, which, if they do not extirpate the bats, have Threats to and from Bats ARTICLE TOOLS http://science.sciencemag.org/content/329/5992/679 MATERIALS SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2010/08/04/329.5992.679.DC2 http://science.sciencemag.org/content/suppl/2010/08/04/329.5992.679.DC1 CONTENT RELATED http://science.sciencemag.org/content/sci/329/5992/697.2.full http://science.sciencemag.org/content/sci/329/5992/676.full http://science.sciencemag.org/content/sci/329/5992/634.full REFERENCES http://science.sciencemag.org/content/329/5992/679#BIBL This article cites 21 articles, 6 of which you can access for free PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions Terms of Service Use of this article is subject to the is a registered trademark of AAAS. Science Science, 1200 New York Avenue NW, Washington, DC 20005. The title (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science Copyright 2010, American Association for the Advancement of Science on September 25, 2019 http://science.sciencemag.org/ Downloaded from


printinsert_linkshareget_appmore_horiz

Download Options

close

Download PDF

temp: no images or image is ohp thumbnail.


Cite this item close

APA

Cras ut cursus ante, a fringilla nunc. Mauris lorem nunc, cursus sit amet enim ac, vehicula vestibulum mi. Mauris viverra nisl vel enim faucibus porta. Praesent sit amet ornare diam, non finibus nulla.

MLA

Cras efficitur magna et sapien varius, luctus ullamcorper dolor convallis. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Fusce sit amet justo ut erat laoreet congue sed a ante.

CHICAGO

Phasellus ornare in augue eu imperdiet. Donec malesuada sapien ante, at vehicula orci tempor molestie. Proin vitae urna elit. Pellentesque vitae nisi et diam euismod malesuada aliquet non erat.

WIKIPEDIA

Nunc fringilla dolor ut dictum placerat. Proin ac neque rutrum, consectetur ligula id, laoreet ligula. Nulla lorem massa, consectetur vitae consequat in, lobortis at dolor. Nunc sed leo odio.