The Paleoindian Chipola: A Site Distribution Analysis and Review of Collector Contributions in the Apalachicola River Valley, Northwest Florida

by

William D. Tyler

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts Department of Anthropology College of Arts and Sciences University of South Florida

Major Professor: Nancy Marie White, Ph.D. Thomas J. Pluckhahn, Ph.D. Robert H. Tykot, Ph.D.

Date of Approval: March 25, 2008

Keywords: archaeology, artifact collector, GIS, isolated finds, public

© Copyright 2008, William D. Tyler
Acknowledgements

This study would not have been possible without the knowledge and assistance of Jeff Whitfield, Terry Mercer, Dan Brymer, and Calvin Foran, the collectors who were gracious and trusting enough to allow me to document their finds from the valley. Thank you all for realizing the importance of your finds, and allowing me to share in your vast knowledge of the Apalachicola Valley. In addition, this research would have never been possible without the persistence, dedication, and knowledge of Dr. Nancy White, my major professor and mentor, and the committee members who edited and reviewed my thesis, Dr. Robert Tykot and Dr. Thomas Pluckhahn. Many thanks also go to Jeff DuVernay and the field school students of the 2007 archaeological field school who dealt with me endless running around the valley to document collections. I hope your exposure to the welcoming collectors of this valley allows you to see the benefits and necessity of including local informants in archaeological research. Finally, my endless gratitude goes to Jolien Verdaasdonk and my family for their patience and support in my academic ventures.
# Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>iii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>vii</td>
</tr>
<tr>
<td>Chapter One: Introduction and Description of Research</td>
<td>1</td>
</tr>
<tr>
<td>Chapter Two: Environment</td>
<td>9</td>
</tr>
<tr>
<td>Landmass and Meltwater</td>
<td>10</td>
</tr>
<tr>
<td>Climate</td>
<td>13</td>
</tr>
<tr>
<td>Flora</td>
<td>15</td>
</tr>
<tr>
<td>Fauna</td>
<td>16</td>
</tr>
<tr>
<td>Conclusions</td>
<td>19</td>
</tr>
<tr>
<td>Chapter Three: Paleoindian Research</td>
<td>20</td>
</tr>
<tr>
<td>History</td>
<td>20</td>
</tr>
<tr>
<td>South America</td>
<td>23</td>
</tr>
<tr>
<td>North America</td>
<td>25</td>
</tr>
<tr>
<td>The Southeast</td>
<td>27</td>
</tr>
<tr>
<td>Florida</td>
<td>31</td>
</tr>
<tr>
<td>Diagnostic Tools</td>
<td>33</td>
</tr>
<tr>
<td>Chapter Four: Laws, Ethics, and the Isolated Finds Program</td>
<td>36</td>
</tr>
<tr>
<td>Introduction</td>
<td>36</td>
</tr>
<tr>
<td>History</td>
<td>37</td>
</tr>
<tr>
<td>Laws and Ethics</td>
<td>40</td>
</tr>
<tr>
<td>Isolated Finds Program (IFP)</td>
<td>46</td>
</tr>
<tr>
<td>Conclusions</td>
<td>54</td>
</tr>
<tr>
<td>Chapter Five: Known Paleoindian Sites</td>
<td>58</td>
</tr>
<tr>
<td>Statistical Analysis</td>
<td>59</td>
</tr>
<tr>
<td>Geographic Information Systems (GIS) Analysis</td>
<td>63</td>
</tr>
<tr>
<td>Probability Map</td>
<td>70</td>
</tr>
<tr>
<td>Chapter Six: Collectors’ Paleoindian Artifacts</td>
<td>72</td>
</tr>
<tr>
<td>Documentation</td>
<td>73</td>
</tr>
</tbody>
</table>
List of Tables

Table 1: Early Dates for Paleoindians in the Americas. 23
Table 2: SAS descriptive statistics for site distances to rivers. 61
Table 3: GIS descriptive statistics for site distances to rivers and site elevations. 66
Table 4: Calculation of Kvamme’s gain statistic for high and medium probability areas with known sites, where the scale of low to high utility is from 0 to 1. 71
Table 5: Calculation of Kvamme’s gain statistic for high and medium probability areas with known sites and collectors’ artifacts combined, where the scale of low to high utility is from 0 to 1. 93
Table 6: The number of sites within 3 km of a spring, sites in the high probability areas, and sites in high probability areas that are within 3 km of a spring. 95
List of Figures

Figure 1: Florida coastline changes since the last ice age approximately 18,000 years ago based on data from Faught and Donoghue (1997). 3

Figure 2: Study area of the six-county region comprising the Apalachicola River Valley. The color gradient represents elevation change (see Figure 1). 5

Figure 3: Apalachicola River Valley displaying the location of the coastline approximately 12,500 years ago. The color gradient represents elevation change. 12

Figure 4: The frequency of Paleoindian sites in North America based on data from the Paleoindian Database of the Americas (PIDBA). 30

Figure 5: Chart of the varying temporal ranges reported for Paleoindian and Transitional period point types by multiple sources. 34

Figure 6: SAS frequencies of site distances to the Apalachicola River where type 1 represents Paleoindian sites and type 2 represents Early Archaic sites. 62

Figure 7: SAS frequencies of site distances to the Chipola River where type 1 represents Paleoindian sites and type 2 represents Early Archaic sites. 62

Figure 8: Visual representation of Paleoindian site distances to rivers in meters. 67

Figure 9: Visual representation of Early Archaic site distances to rivers in meters. 68

Figure 10: Geographic Paleoindian site probability map created from the site elevation and distance to Chipola River buffers. The color gradient represents elevation change. 69

Figure 11: Spring and cave in the general vicinity of Calvin Foran’s find. 74
Figure 12: Distribution of artifacts collected by Dan Brymer in the valley. The color gradient represents elevation change.

Figure 13: Location of artifact collected by Calvin Foran in the valley. The color gradient represents elevation change.

Figure 14: Distribution of artifacts collected by Terry Mercer in the valley. The color gradient represents elevation change, and the dredging area on the lower Chattahoochee River includes both Paleoindian and Transitional artifacts.

Figure 15: Distribution of artifacts collected by Jeff Whitfield in the valley. The color gradient represents elevation change.

Figure 16: Distribution of Paleoindian artifacts in the valley collected by all four collectors. The color gradient represents elevation change, and the dredging area includes artifacts from both Paleoindian and Transitional periods.

Figure 17: Distribution of Paleoindian and Transitional period artifacts in the valley collected by all four collectors. The color gradient represents elevation change, and the dredging area includes artifacts from both periods.

Figure 18: Distribution of maximum point lengths in millimeters for collectors’ Paleoindian artifacts. The color gradient of the map represents elevation.

Figure 19: Distribution of maximum point widths in millimeters for collectors’ Paleoindian artifacts. The color gradient of the map represents elevation.

Figure 20: Distribution of points’ length-to-width ratio for collectors’ Paleoindian artifacts. The color gradient of the map represents elevation change.

Figure 21: Combined distribution of known Paleoindian sites and collectors’ Paleoindian and Transitional period artifacts. The color gradient of the map represents elevation change, and the dredging area includes artifacts from both periods.

Figure 22: Bottleneck area of the Chipola River where the majority of known Paleoindian sites and collector artifacts are found, and where a number of springs exist. The color gradient of the map represents elevation change.
Figure 23: Paleoindian site probability map, with high probability areas in red, and collectors’ data, known sites, and springs. The color gradient represents elevation change. 94

Figure 24: General vicinity of site 8Ca92, Ring Jaw Island on the Chipola River, facing north. 96

Figure 25: General vicinity of site 8Ca98, Look & Tremble Shoals on the Chipola River, facing east. 97
The Paleoindian Chipola:
A Site Distribution Analysis and Review of Collector Contributions
in the Apalachicola River Valley, Northwest Florida

William D. Tyler

ABSTRACT

At the end of the Pleistocene and the beginning of the Holocene, between 12,000 and 10,000 years ago, humans began to spread throughout North America and into many areas of Florida. These first Floridians are known as Paleoindians, and their culture is largely defined by their lithic assemblage, which includes the well known Clovis point. As the Pleistocene ice age came to a close glaciers melted, rivers experienced a drastic increase in water volume and the landmass of Florida began to shrink as the sea level in the Gulf of Mexico rose. This event likely submerged many early Paleoindian sites in coastal areas, and the only sites known now are usually found in river valleys. This research will examine the distribution of Paleoindian sites in the Apalachicola River Valley of northwest Florida in terms of environmental characteristics, namely distance to river and site elevation. Using data from known sites and from four artifact collectors, this research will show that Paleoindian sites cluster along the Chipola River, the major tributary of the Apalachicola River, and will also argue that it is far more beneficial for archaeologists to work with artifact collectors and document their vast amounts of data than to shun them and deem their data questionable and their methods unethical.
Chapter One: Introduction

Since the findings at the Meadowcroft, Monte Verde, and Topper sites the debate within American archaeology about the peopling of the Americas has greatly intensified, with a focus on when people first arrived and what route they took. In fact, the debate amongst American archaeologists over which of these sites is the oldest and what sites have credible evidence for extremely early occupation will likely continue for some time (Adovasio and Pedler 2005; Goodyear 2005; Gruhn 2005). The current belief is that people either traveled the west coast or ventured through the ice-free corridor of western North America sometime between 20,000 and 12,000 years ago (Fagan 2000:79). Unfortunately, there has been less focus on what happened during those first few millennia when people are known to have been in the Americas. The purpose of this research is to address this issue in the northwest region of Florida. The goals are to examine the Paleoindian distribution in the Apalachicola River Valley of northwest Florida, to demonstrate how Paleoindians centered on the smaller Chipola River in this region rather than the larger Apalachicola River, to evaluate the contributions of artifact collectors and their collections to the known data, and to create and test a Paleoindian site location probability model using known sites and collector data. This research required no excavation, but was able to provide new insights into a region where Paleoindians and their site distributions are rarely studied and demonstrate the importance of keeping a
good working relationship between the public, artifact collectors, academia, and
government officials.

The Apalachicola and the Chipola are the two major rivers in the central
panhandle of Florida. The Apalachicola River is formed by the confluence of the Flint
and Chattahoochee Rivers beginning at the Florida-Georgia border in what is today
known as Lake Seminole, a lake created in 1957 from the installation of locks on the
Apalachicola just below the confluence. It is joined by the Chipola River from the west,
just north of the swampy delta region that encompasses the lower third of the
Apalachicola river valley. Following the last ice age, glacial melt pushed large amounts
of water through this region; flood plains became marshes, the banks of the river were
submerged, and Paleoindian populations experienced a rise in sea-level (Figure 1) that
significantly reduced Florida’s landmass (Faught and Donoghue 1997). As the river
patterns changed in northwest Florida at the end of the Pleistocene, Paleoindian cultures
that were present from 12,500 to 8,000 years ago gave way to Early Archaic cultures,
present from 8,000 to 6,000 years ago, and population distribution changed as well
(Smith 1986; Steponaitis 1986). Large diagnostic Paleoindian spear points, such as
Suwannee, Simpson, and Clovis, which were likely used to kill Pleistocene mega-fauna,
became less prevalent and Early Archaic points that were smaller and more varied, such
as Kirk, Dalton, and Bolen, became more frequent (Bullen 1975; Smith 1986). Small
groups of Paleoindians living in close proximity to rivers transitioned into Archaic
populations that were more dispersed throughout the river valleys due to changes in
landscapes and cultural adaptations, such as ceramics which appeared later in the Archaic.
Figure 1: Florida coastline changes since the last ice age approximately 18,000 years ago based on data from Faught and Donoghue (1997).
Correspondingly, Paleoindian sites in northwest Florida are found near major rivers, while Early Archaic sites portray a more even distribution across the landscape.

Figure 2 shows the six counties surrounding the Apalachicola River that comprise the study area for this research. The Apalachicola River Valley was chosen for two reasons: the University of South Florida has a long-term archaeological research program in the valley, and has acquired a wealth of data from the region; and the history of the rivers’ fluvial geomorphology suggests stream capture, leaving Paleoindian sites on the smaller tributary, the Chipola River, which is more accessible and less researched.

This research is divided into six main sections: the Pleistocene-Holocene transitional environment in Florida; Paleoindian research in the Americas; the ethical considerations of dealing with artifact collectors; a statistical and geographic analysis of known Paleoindian sites in northwest Florida; a geographic analysis of the distribution of collectors’ Paleoindian artifacts in northwest Florida; and an evaluation of the combined data from the state and collectors. Chapter 2 begins with an examination of the environment in northwest Florida at the close of the last Ice Age, followed by a review in Chapter 3 of known Paleoindian distributions in the Americas, the United States, the Southeast, and Florida, including an overview of Paleoindian lithic typologies, with a focus on those that are diagnostic to the Paleoindian time period from 12,500 to 8,000 years ago. The Paleo-Aucilla studies are used for a comparative basis since the Aucilla River Valley is only two valleys east of the Apalachicola, and both were relatively heavily populated during the late Pleistocene. The environmental and Paleoindian chapters are followed by a general overview of the ethical considerations concerning artifact collectors and the use of their data, their diverse perceptions, their past
Figure 2: Study area of the six-county region comprising the Apalachicola River Valley. The color gradient represents elevation change (see Figure 1).
involvements with archaeology, the laws that pertain to their actions, and the contributions they have made to the science. The three chapters that follow examine the distribution of Paleoindian sites and artifacts. Chapter 5 is composed of the preliminary statistical and geographic analyses that are used to demonstrate that Paleoindian and Early Archaic populations in northwest Florida were distributed differently around the Apalachicola and Chipola rivers. These analyses show that Paleoindian sites were closer to the Chipola River while Early Archaic sites were either scattered throughout the valley or centered near the Apalachicola River. Chapter 6 examines the artifacts documented from artifact collectors in the valley, using geographic analysis and based on lithic typologies and the size distributions of the tools. Artifact collectors possess a great amount of information for archaeologists, and this research will demonstrate how valuable their knowledge and property are to the profession. Four collectors were interviewed about their Paleoindian artifacts found in the Chipola and Apalachicola rivers. Most of the artifacts in their collections come from recreational diving in the rivers or from working on boats that dredge the rivers. Their Paleoindian lithic tools were documented using photography and metric analysis. Chapter 7 will combine all data from existing sites with the data from the collectors, including the newly obtained metric data for each artifact, to further refine the known distribution of Paleoindians in northwest Florida and to create a useful probability map for where Paleoindian sites might be found in the future. The site distribution is then analyzed by projectile point length and width and by time period of the lithic artifacts to examine possible patterns.

Chapter 8 discusses the conclusions of this research, including the locations of Paleoindian sites and artifacts, the “bottleneck” area of the Chipola where the elevation
rises around the river and where most of the Paleoindian sites are located, the common environmental characteristics of the sites, the ethics and benefits of working with collectors, and potential areas of future investigation. The research also addresses questions about the usefulness of information gained from the collectors, including what the results would conclude without the collectors’ data, what some solutions to the collector/archaeologist dichotomy could be, and what potential problems are caused by restricting collectors. The research concludes with remarks about the dearth of research and knowledge on Paleoindians in Florida. It includes comments on the important contributions that can be made by collectors, and the possible loss of knowledge occurring due to changes in the related laws. The importance of this research lies in its ability to show that academics do not have a corner on knowledge, collectors are going to continue collecting artifacts regardless of laws, and information will be lost without good anthropologist-informant relationships. The purpose of this project is not only to add to the knowledge of Paleoindians in Florida and North America, but to add to the public knowledge of Florida’s past and the academic acceptance of public involvement in the recovery of archaeological data. While in the past there have been academic archaeologists that have tried to claim possession of knowledge, understanding, and interpretations, new generations of public archaeologists, similar to some of their predecessors, are attempting to increase public participation in the creation of their public heritage. Though many artifact collectors do not record artifacts’ proveniences or association, others, including the collectors dealt with in this research, do. This work will demonstrate the important role that artifact collectors can play in an area where relatively little professional archaeology has been performed, and the important insights that locals
can contribute. It will also demonstrate that collectors can be educated to record as much information as possible from the artifacts’ recovery locations. The public should not fear prosecution for their curiosity in the history of the land where they grew up, and academics should not promote the hoarding of knowledge or its acquisition. The goal of this work was to do good research while also addressing a major issue in public archaeology, namely the ethical considerations when interacting with artifact collectors and documenting the data they hold.

The statistical analyses for this research were completed in the fall of 2005, the geographic analyses were completed in the spring of 2006, documentation of collectors’ artifacts was completed in the summer of 2007, and analysis of the collections was completed in the fall of 2007. All of the dates of archaeological sites in this research are calibrated radiocarbon years before present (e.g., 12,500 cal B.P.). Dates of sites from sources that reported uncalibrated dates were calibrated using OxCal calibration software. Dates of climate change events reported in the environmental background chapter (Chapter 2) are years before present (e.g., 18,000 B.P.). The Appendices include the information discussed regarding the Isolated Finds Policy (IFP), data and sources of information on known Paleoindian sites, and all of the information obtained from the collectors’ artifacts, including the photographs of each lithic tool documented.
Chapter Two: Environment

The environment of north Florida today is one of high heat and high humidity, with consistent wet and dry seasons and few occasions of temperatures below freezing. The average temperature range falls between 12°C in the winter and 27°C in the summer (Watts et al. 1992:1064). The region is characterized by high alluvial forests consisting of pine (*Pinus*), oak (*Quercus*), beech (*Fagus*), and cypress (*Taxodium*) trees, and the largest fauna include the Florida black bear (*Ursus americanus* floridanus), the bobcat (*Felis rufus*), the white-tailed deer (*Odocoileus virginianus*), and the American alligator (*Alligator mississippiensis*). The habitat of the manatee (*Trichechus manatus*) also extends to this area of Florida, though only one has been spotted in the coastal regions of the valley (personal communication with ANERR personnel) and no others have been recorded here in recent history (Alden et al. 1998:377). Conversely, the late Pleistocene environment was marked by cooler, dryer conditions that varied drastically as the Laurentide ice sheet of North America slowly melted at the end of the last Ice Age, releasing cold fresh water into the oceans at variable rates (Clark et al. 1999). The flora and fauna of this period were far more diverse than at present as environments changed with fluctuating meltwater flow down major rivers and rising sea levels. This chapter will examine the changing Florida landmass and river volumes, climate, and flora and fauna that existed from the time after the last glacial maximum (~18,000 B.P.) until the end of the Younger Dryas period (~10,000 B.P.). The goal of the chapter is to
demonstrate the fluctuating environmental conditions present at the time of the first Floridians, commonly referred to as Paleoindians, who inhabited the area as early as 12,500 B.P. (Dunbar 2006). All of the dates used in this chapter are reported in uncalibrated years before present.

**Landmass and Meltwater**

At the last glacial maximum large amounts of the Earth’s water were trapped in glaciers, the largest of these being the Laurentide ice sheet covering most of Canada and the northern United States (Clark et al. 1996). Before the ice began to melt, sea levels were approximately 120 m lower than their current locations, and Florida was nearly three times its current size (Faught and Donoghue 1997). Though sea level rose to its current location approximately 5,000 years ago, it did so in a variable manner, rising in at least three spurts and also receding a few times (Balsillie, et al. 2006; Clark et al. 1996; Donoghue 1993). The Laurentide ice sheet receded and readvanced during this period as well, causing variable water flow down a variety of river valleys. Based on reconstructions by Clark et al. (1996), from the last glacial maximum until roughly 13,300 B.P. most of the water flowed down the Mississippi River Valley until the ice sheet retreated far enough north for the water to have an eastward outlet in the Hudson Valley. As the ice sheet had a brief readvance between 13,000 and 12,400 B.P., the Mississippi River once again became the major runoff path. The first large meltwater pulse occurred following this readvance, dumping large amounts of runoff to the Mississippi Valley at first (12,400 – 12,000 B.P.), causing the ice sheet to retreat far enough north once again to empty east into the Hudson Strait (12,000 – 11,750 B.P.).
This pulse was followed by a short readvance of the Laurentide ice sheet causing meltwater to divert back to the Mississippi Valley until 11,100 B.P. when meltwater again returned toward the easterly outlets of the Hudson Strait and St. Lawrence Valley. These fluctuations not only caused the climate to change drastically, they also affected the morphology of the rivers in the Southeast and the amount of sediment they carried to their deltas.

While the Mississippi River is most noted as the southern route for glacial meltwater, the Apalachicola River also experienced a drastic increase in water flow to an estimated 13,900 m$^3$/s (cubic meters per second), approximately 70% more than its current maximum discharge (Donoghue 1993). Based on reconstructions by Donoghue (1993), from the period of 16,500 to 13,000 B.P. the Apalachicola River was significantly farther west than at present, likely including what are now Lake Wimico and the Jackson River, and possibly also including the Chipola River and Dead Lake, a lake just north of where the Chipola feeds into the Apalachicola today. Evidence from seismic survey demonstrates that the mouth of the river extended as far south as the Florida Middle Ground, some 170 km southeast of the present mouth and 40 m below current sea level. From the period of 13,000 to 10,000 B.P. sea level rose to a conservative estimate of 16 m below present, though it was likely closer to 20 m below. During this period of sea level rise, the Apalachicola River slowly meandered eastward, eventually reaching its current location by 6000 B.P. This and other research (e.g. Donoghue 1992; Muhs et al. 2004) places the coastline of Florida near the -20 meter contour line during the time of Paleoindian inhabitance. A map of the estimated coast of Florida and the location of the Apalachicola River are displayed in Figure 3.
Figure 3: Apalachicola River Valley displaying the location of the coastline approximately 12,500 years ago. The color gradient represents elevation change.
The Chipola River, a spring-fed tributary of the Apalachicola River on its west side, has strikingly different characteristics than its neighbor. Created by the confluence of Marshall Creek and Cowarts Creek just south of the Alabama-Florida border, the Chipola is a clear-water river that is notably shallower and narrower than the Apalachicola and cuts into the deep limestone karst below it, connecting many of the springs and sinkholes that are scattered throughout the valley (Mohlenbrock 2007; Scott et al. 2004) and exposing chert outcroppings in the northern regions (Upchurch 1982). During times of lower water levels in the late Pleistocene the Chipola River likely fluctuated between a flowing stream and a series of springs and sinkholes. While it is different in morphology from the Apalachicola River, it is possible that the two were much closer together in the past and shared similar surrounding environments just as they do today. Together the Chipola and Apalachicola Rivers create a valley that covers nearly 20,000 square miles of northwest Florida (White and Trauner 1987:162), which currently contain a plethora of flora and fauna that, despite its modern diversity of common and rare species, would be dwarfed by the diversity of their late Pleistocene predecessors.

**Climate**

The fluctuating Laurentide ice sheet and concomitant changes in river flow and sea level caused the climate in the Southeast to vary as well (Clark et al. 1999; 2001; Kutzbach et al. 1993). As a general rule, when the Laurentide produced an easterly runoff the climate on the Gulf Coast was warmer, and when the runoff was diverted southward the temperatures cooled (Clark et al. 2001). This pattern was not entirely
homogenous however, causing variable climates in different regions of Florida. Data from oxygen isotopes in ice core samples, used as a proxy for regional trends in climate change, and palynological analyses of macro- and micro-botanical remains from Florida, used to create a local climate model, have demonstrated that regional trends in temperature, humidity, and water levels do not always reflect the local climate in northwest Florida. Evidence from the Aucilla River (Dunbar 2006), approximately 100 km east of the Apalachicola Valley, and at Camel Lake (Watts et al. 1992), adjacent to the Apalachicola River, have produced estimates of the local climate in northwest Florida during the Late Pleistocene-Holocene transition. From 14,000 to 12,000 B.P., during the transition from the Older Dryas to the Allerød, northwest Florida was cold and arid, with an average temperature range of -5°C to 18°C, similar to current averages in southern Quebec (Watts et al. 1992:1064). At this time the water table was between 26 and 10 m below the present (Dunbar 2006:134-136). During the Allerød period (12,300 to 11,000 B.P.) the temperatures became warmer and the humidity and water table rose; however, there was a slight glacial cooling period from 11,400 to 11,300 B.P. (Dunbar 2006:137). Following the Allerød period glacial conditions resumed and caused a cool arid environment and a slightly lower water table in north Florida during the early Younger Dryas (Dunbar 2006:137-138). At approximately 10,000 B.P. the warmer wetter climate returned until some time around 8,000 B.P. (Watts et al. 1992). This warming phase, coinciding with the onset of the Preboreal period, was interrupted by another period of arid conditions at ~9,000 B.P. that was followed by extremely wet conditions relating to “enhanced monsoonal activity” (Watts et al. 1992:1064). The water table in northwest Florida dropped at the onset of this warming phase, but then began to rise continually
after ~9,500 B.P. (Dunbar 2006:139-142). The climate of northwest Florida between 14,000 and 8,000 B.P. was in a constant state of flux and the flora and fauna present during this time period also reflect this diversity.

**Flora**

From the period of 14,000 to 8,000 B.P. the vegetation in northwest Florida fluctuated with the changing temperatures and water levels (Webb et al. 1993). Palynological evidence from Camel Lake on the east side of the Apalachicola River, 17.5 km south of the city of Bristol in Liberty County, demonstrates that the flora present during this time period varied between xeric and mesic forests, which culminated around 8,000 B.P. with the pine forests, bayheads, and cypress swamps found in the area today (Watts et al. 1992; Watts and Hansen 1994). Palynological studies in the Paleo-Aucilla River Valley confirm this change and add to the likely flora present during the previously stated time frame in north Florida (Hansen 2006). Before 14,000 B.P. pine (*Pinus*), oak (*Quercus*), hickory (*Carya*), and cypress (*Taxodium*) dominated the environment of Camel Lake, with few other species present (Watts et al. 1992:1059). By 14,000 B.P. the presence of pine drops drastically from greater than 80% to less than 20%, and there is an increase in the presence of deciduous hardwoods indicating a dryer and cooler environment (Watts et al. 1992). Species of trees present at this time include hickory (*Carya*) and the brief presence of spruce (*Picea*), which then gave way to beech (*Fagus*) as temperatures began to warm (Watts et al. 1992:1062). At the peak of the spruce presence, there also seems to be a peak in the presence of upland herbs that prefer semi-dry prairie habitats, such as *Ambrosia* and *Artemisia* (Watts et al. 1992:1062). From the
period of 12,000 to 10,000 B.P. oak becomes the dominant species and a number of sedges and grasses were present that suggest a “plant community responding to a fluctuating water table” (Watts et al. 1992:1062). By 10,000 B.P. the mesic oak forests were slowly replaced by pine, cypress, sweet gum (Liquidambar), and other flora of wetland environments (Watts et al. 1992; Watts and Hansen 1994). In the Aucilla Valley, more species are noted that likely also occurred in the Apalachicola area. During the period of oak dominance at Camel Lake, the Aucilla Valley shows a similar oak dominance, but also has species of maple (Acer), elm (Ulmus), hackberry (Celtis), walnut (Juglans) and ash (Fraxinus) (Hansen 2006). In the Aucilla Valley, this period from 12,000 to 10,000 B.P. represents similar characteristics to modern mesic forests in north Florida (Hansen 2006:174). The results of the analyses from Camel Lake and the Aucilla Valley show a general trend from xeric forests to mesic forests and swamplands. This variety of environments allowed for varying habitats that supported a diversity of wildlife species during the Pleistocene-Holocene transition (Graham et al. 1996).

Fauna

Though little research has been done on the fauna present in the Apalachicola River Valley during the Pleistocene-Holocene transition, there have been a number of results from studies done throughout Florida (e.g. Kurten and Anderson 1980; Webb 1974; Webb et al. 2004) and in neighboring river valleys (e.g. Webb and Simons 2006). Past research has demonstrated that the Apalachicola River Valley is home to a number of rare, endemic, and relict species that are specific to this river valley in the Southeast, and were likely present or leftover from the Pleistocene or earlier time periods when
water levels and climates were drastically different than during the Holocene (Hubbell et al. 1956; James 1961; Livingston 1984; Means 1977). Flora and fauna unique to this region include the Torreya tree (*Torreya taxifolia*) and the Florida yew (*Taxus floridana*) (James 1961; Kwit et al. 1998), Apalachicola rosemary (*Conradina glabra*) and Chipola dye-flower (*Coreopsis integrifolia*) (Chafin et al. 2000), Apalachicola dusky salamander (*Desmognathus apalachicolae*), four-toed salamander (*Hemidactylium scutatum*), Barbour’s map turtle (*Graptemys barbouri*), and the fire-back crayfish (*Cambarus pyronotus*) (Hipes et al 2001; Means and Karlin 1989), and three species of mollusk, Apalachicola floater (*Anodonta heardi*), Chipola slabshell (*Elliptio chipolaensis*), and purple bankclimber (*Elliptoideus sloatianus*) (Hipes et al. 2001). Other than the rare, endemic, and relict species, there is evidence that the environment and the flora in the Apalachicola area are, and have been, similar to those in the Aucilla River Valley, so it will be assumed here that the faunal composition was similar as well.

Among the freshwater aquatic fauna in the area were fish in the Lepisosteidae family, such as garfish, the Ictaluridae family (catfish), and the Centrarchidae family, such as sunfish, bass, and drum (Webb and Simons 2006:219). The largest numbers of aquatic representatives come from the turtle families. Turtle remains found include the mud turtle (*Kinosternon*), the musk turtle (*Sternotherus*), the Florida red-bellied turtle (*Pseudemys nelsoni*), and the slider (*Trachemys scripta*) (Webb and Simons 2006:223). Also in abundance in the Aucilla Valley is the American alligator (*Alligator mississippiensis*) (Webb and Simons 2006:223).

Birds known to inhabit the valley in the late Pleistocene included the blue heron (*Ardea herodias*), the Canada goose (*Branta canadensis*), the cormorant (*Phalacrocorax*),
an extinct species of stork (*Ciconia maltha*), the California condor (*Gymnogyps californicus*), the wild turkey (*Meleagris gallopavo*), the bald eagle (*Haliaeetus leucocephalus*), the red-shouldered hawk (*Buteo lineatus*), and the red-tailed hawk (*Buteo jamaicensis*) (Webb and Simons 2006:224-225).

The most diversity in the Aucilla Valley studies was found in the terrestrial fauna. The largest terrestrial herbivores found in the region included the American mastodon (*Mammut americanum*), the Columbian mammoth (*Mammuthus columbi*), Jefferson’s ground sloth (*Megalonyx jeffersoni*), Harlan’s ground sloth (*Paramylodon harlani*), the vero tapir (*Tapirus veroensis*), the Pleistocene horse (*Equus*), the long-nosed peccary (*Mylohyus fossilis*), the long-legged llama (*Hemiauchenia macrocephala*), the short-legged llama (*Palaeolama mirifica*), the extinct bison (*Bison antiquus*), and the whitetailed deer (*Odocoileus virginianus*) (Webb and Simons 2006:228-232). Large terrestrial carnivores found include the dire wolf (*Canis dirus*), the domesticated dog (*Canis familiaris*), the black bear (*Ursus americanus*), the Florida cave bear (*Tremarctos floridanus*), the bobcat (*Lynx rufus*), a species of extinct cat similar to the margay (*Leopardus amnicola*), raccoons (*Procyon lotor*) and river otters (*Lutra canadensis*) (Webb and Simons 2006:227-228). Other terrestrial fauna include the Virginia opossum (*Didelphis virginiana*), the giant armadillo (*Holmesina septentrionalis*), the glyptodont (*Glyptotherium floridanum*) – a relative of the armadillo, the fox squirrel (*Sciurus niger*), the marsh rabbit (*Sylvilagus palustris*), the beaver (*Castor canadensis*), the porcupine (*Erethizon dorsatum*), the muskrat (*Ondatra zibethicus*), and the round-tailed muskrat (*Neofiber alleni*) (Webb and Simons 2006:225-227). Of the terrestrial fauna, only the deer, opossum, raccoon, beaver, and porcupine species are known to still inhabit north
Florida, and most of the other species listed became extinct after the late Pleistocene (though some have related analogs in South America: Webb and Simons 2006).

**Conclusions**

As the Pleistocene epoch came to a close and the Holocene epoch began, Florida was in a constant state of change. Sea level was rising, and rivers were moving and changing their flow. The flora and fauna present were extremely diverse, and many common creatures of the Pleistocene became extinct as they were replaced by animals that were better adapted to the new environments. The Apalachicola River Valley was host to a diverse array of habitats, and the valley was scattered with springs seeping through the limestone floor to supply them with fresh water. As humans entered this region, likely between 13,000 and 12,000 years ago, they had the opportunity to exploit a number of resources, including chert outcroppings in the north to make stone tools, springs, streams and rivers to provide needed water, numerous plants, animals, and aquatic resources to provide food, and vanishing Pleistocene megafauna as well. Though little evidence was left behind by the first Floridians in this valley, archaeological evidence that is present can help to uncover what their lives may have been like during that pivotal period in north Florida. The following chapter will give an overview of what is known about Paleoindians in the Americas, narrowing focus from North and South America to the United States to the Southeast and then to Florida’s prehistoric past.
Chapter Three: Paleoindian Research

Of the groups studied by archaeologists in North America the first Americans, also known as Paleoindians, are the group with the most qualifiers. Research on Paleoindian cultures and sites is the most romanticized, the most speculative, the most contested, and the most frequently portrayed in popular media. In my experience, the sites also appear to be the least academically researched, have the least amount of concrete data, and are represented by the fewest number of articles in peer-reviewed publications. This chapter examines the history of Paleoindian research in the Americas. It is not a comprehensive evaluation of all data on Paleoindians, but it does give an overview of what is known archaeologically and what issues have been addressed in the past eighty years regarding the peopling of the Americas, specifically what these first peoples left behind in the archaeological record. After examining issues of the earliest finds, the migration routes of the first Americans, and the history of research from the continental scale to the Southeast, and Florida, the chapter concludes with an overview of lithic types considered to be Paleoindian in origin and how those types are often used for relative dating of sites.

History

The first Paleoindian research in North America began with the discovery of two sites in the southwestern United States, Folsom and Clovis. In 1926 fluted projectile
points known as Folsom points were found protruding from extinct bison remains in Folsom, New Mexico, and were speculated to date to 10,000 years ago (Bryan 2004:215, Wormington 1957:23). Six years later in Clovis, New Mexico, another type of fluted projectile point, named Clovis, was discovered with mammoth bones and was thus assumed to be even older than the Folsom finds, with speculated dates ranging from 37,000 to 7,000 years ago (Bryan 2004:215; Wormington 1957:47, 58-59). Since these excavations, the focus of Paleoindian research has been on when they first arrived, what route they took to get to the Americas, and where and how they spread throughout the continents. In the early years of research on the topic, Paleoindian sites and artifacts became more and more prevalent based solely on artifact types. The Works Progress Administration (WPA) excavations uncovered a plethora of sites identified as Paleoindian based on their depth in the ground and the lithic typologies of the time (Mason 1962). Once radiocarbon dating became available in 1949, the oldest sites became the focus of the migration route debate; whether the first Americans took the Bering land bridge, which was most exposed about 20,000 years ago (Muhs et al. 2004), and traveled along the frozen coastline or ventured through the ice-free corridor into Canada was unknown (Wormington 1957). This debate was later combined with finds that appeared to be older than Clovis (Tankersley 2004), provoking discussions about possible pre-Clovis populations and how they might have made the journey from Asia to America without an ice-free corridor or the Bering land bridge (e.g. Bonnichsen and Lepper 2005; Fiedel 2006; Haynes 2005; Goodyear 2005; Stanford et al. 2005). As more data surfaced it seemed likely that Clovis was not the diagnostic point of the very first people in America, but likely one of the first points to evolve in the Americas. In fact,
new radiocarbon research has shown that the Clovis point complex existed only from 11,050 to 10,800 B.P. (Waters and Stafford 2007). This debate is still ongoing and as more sites are discovered with datable materials, the near future may resolve some of the questions being asked. Unfortunately, in the Southeast, fewer academic excavations have focused on Paleoindians in the recent past and cultural resource management (CRM) excavations rarely acknowledge any sites more than a meter below the surface, much less the possible pre-Clovis sites which are much deeper. Also, CRM excavations only occur in areas where land development is happening so the sample of sites that does surface is not comprehensive. In addition, most sites identified as Paleoindian are not intact sites with clear stratigraphy and datable material, but isolated artifact finds from the ground surface or river bottoms that often come from artifact collectors and non-archaeologists.

Though Paleoindian research has evolved over the past eighty years, in some ways for the better and others for the worse, there are still relatively few stratigraphically-intact sites that have been excavated and revealed datable materials to add to the overall picture of Paleoindian colonization and patterns of site distribution. The following sections examine some of the major sites that have produced early Paleoindian dates for South America, North America, the Southeast, and then Florida. Central America is not included in this summary because few studies have been done on Paleoindians in the region, and only two sites have produced radiocarbon dates. The two dates from Central America come from Panama and date between 13,600 and 10,100 B.P. (Cooke and Ranere 1992; Ranere and Lopez 2007). Table 1 shows the major sites discussed and the earliest dates that have been obtained from each site.
Table 1: Early Dates for Paleoindians in the Americas.

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Location</th>
<th>Date B.P.*</th>
<th>Source(s) **</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bluefish Caves</td>
<td>Yukon, Canada</td>
<td>25,700-24,850</td>
<td>Morlan 2003</td>
</tr>
<tr>
<td>Cactus Hill</td>
<td>Virginia</td>
<td>21,900-18,600</td>
<td>Goodyear 2005; Anderson 2005</td>
</tr>
<tr>
<td>Meadowcroft</td>
<td>Pennsylvania</td>
<td>21,800-16,800</td>
<td>Goodyear 2005</td>
</tr>
<tr>
<td>Saltville</td>
<td>Virginia</td>
<td>18,000-17,000</td>
<td>Goodyear 2005; Anderson 2005</td>
</tr>
<tr>
<td>Taima-taima</td>
<td>Venezuela</td>
<td>18,700-16,200</td>
<td>Gruhn 2004; 2005</td>
</tr>
<tr>
<td>Monte Verde</td>
<td>Chile</td>
<td>17,000-15,400</td>
<td>Dillehay 1989; 1997</td>
</tr>
<tr>
<td>Mud Lake</td>
<td>Wisconsin</td>
<td>16,550-15,750</td>
<td>Overstreet 2004</td>
</tr>
<tr>
<td>Fenske</td>
<td>Wisconsin</td>
<td>16,550-15,750</td>
<td>Overstreet 2004</td>
</tr>
<tr>
<td>Los Toldos</td>
<td>Argentina</td>
<td>16,500-13,300</td>
<td>Gruhn 2005</td>
</tr>
<tr>
<td>Pachamachay</td>
<td>Peru</td>
<td>16,500-11,000</td>
<td>Gruhn 2005</td>
</tr>
<tr>
<td>Johnson</td>
<td>Tennessee</td>
<td>16,500-11,000</td>
<td>Broster and Norton 1996</td>
</tr>
<tr>
<td>Topper</td>
<td>South Carolina</td>
<td>16,000-15,000</td>
<td>Goodyear 2005; Anderson 2005</td>
</tr>
<tr>
<td>Little River sites</td>
<td>Kentucky</td>
<td>15,900-15,050</td>
<td>Freeman et al. 1996</td>
</tr>
<tr>
<td>Piedra Museo</td>
<td>Argentina</td>
<td>15,650-14,950</td>
<td>Gruhn 2005</td>
</tr>
<tr>
<td>Page-Ladson</td>
<td>Florida</td>
<td>15,200-14,250</td>
<td>Dunbar 2006</td>
</tr>
<tr>
<td>Lapa do Boquete</td>
<td>Brazil</td>
<td>14,700-13,500</td>
<td>Gruhn 2005</td>
</tr>
<tr>
<td>Little Salt Spring</td>
<td>Florida</td>
<td>14,700-13,400</td>
<td>Clausen et al. 1979</td>
</tr>
<tr>
<td>Sloth Hole</td>
<td>Florida</td>
<td>14,650-14,050</td>
<td>Dunbar 2006</td>
</tr>
<tr>
<td>Clovis</td>
<td>New Mexico</td>
<td>14,000-12,200</td>
<td>Haynes and Agogino 1966</td>
</tr>
<tr>
<td>Tibito</td>
<td>Colombia</td>
<td>13,860-13,400</td>
<td>Gruhn 2005</td>
</tr>
<tr>
<td>QJ-280</td>
<td>Peru</td>
<td>13,700-12,400</td>
<td>Gruhn 2005</td>
</tr>
<tr>
<td>Alexon Bison</td>
<td>Florida</td>
<td>13,330-12,920</td>
<td>Webb et al. 1984</td>
</tr>
<tr>
<td>Pedra Pintada</td>
<td>Brazil</td>
<td>13,310-12,910</td>
<td>Gruhn 2005</td>
</tr>
<tr>
<td>Fell’s Cave</td>
<td>Chile</td>
<td>13,300-12,750</td>
<td>Gruhn 2005</td>
</tr>
<tr>
<td>Folsom</td>
<td>New Mexico</td>
<td>12,980-12,860</td>
<td>Meltzer et al. 2002</td>
</tr>
<tr>
<td>Dust Cave</td>
<td>Alabama</td>
<td>12,840-12,440</td>
<td>Driskell 1996</td>
</tr>
</tbody>
</table>

* Date ranges are calibrated 2 sigma ranges using OxCal software.

** The sources given are recent synopses of all work performed at these sites rather than the first publications, since first publications only report initial findings and not summaries of multiple years of excavations.

South America

South America has a large number of sites that date to the Paleoindian period, some contemporaneous with Clovis and some apparently pre-Clovis, but very few are similar to the Clovis sites known in North America. The site with the oldest accepted dates in South America is found in Venezuela. The site of Taima-taima is located in the coastal regions of Venezuela and has produced willow leaf-shaped El Jobo projectile points that are found in association with Pleistocene megafauna and wood and bone.
dating between 18,700 and 16,200 cal B.P. (Gnecco and Aceituno 2006; Gruhn 2004; 2005). Similarly, the Monte Verde site in central Chile has produced dates between 17,000 and 15,400 cal B.P. in association with preserved food remains, wooden artifacts, cordage, El Jobo points, and mastodon remains (Dillehay 1989; 1997; Gnecco and Aceituno 2006; Gruhn 2005). Monte Verde has also produced dates in excess of 30,000 years associated with a possible hearth and the site of Pedra Furada in Brazil has produced dates in excess of 35,000 years, but these dates and human associations are still contested (Bonnichsen and Lepper 2005; Gruhn 2004). Two sites in Argentina have provided dates that are more than 1000 years older than Clovis. Piedra Museo is located in the Patagonia area of Argentina and is a rockshelter that overlooks a Pleistocene lake (Gruhn 2005; Miotti 2004). Piedra Museo excavations have uncovered stemmed fishtail points and other lithic remains in association with extinct megafauna dating between 15,650 and 14,950 cal B.P. (Borrero 2006; Gruhn 2005; Jackson 2006; Miotti and Salemme 2005). Similarly the rockshelter site of Los Toldos dates between 16,500 and 13,300 cal B.P., is only 50 km away from Piedra Museo, and has unifacial stone tools associated with extinct horse and camel species (Gruhn 2004; 2005). In Peru, Pachamachay is a site in a cave nearly 4000 meters above sea level with bifacial triangular and leaf-shaped projectile points associated with extinct camelids that dates between 16,500 and 11,000 cal B.P. (Gruhn 2005). In Colombia, the site of Tibito contains numerous lithic flakes found in association with horse and mastodon bone fragments dating between 13,860 and 13,400 cal B.P., however no bifacial tools were discovered during the excavations (Borrero 2006; Gruhn 2005). Slightly younger than the Clovis point period, the site QJ-280 in Quebrada Jaguay, Peru dates between 13,700
and 12,400 cal B.P. and shows evidence of a population that exploited mainly marine resources (Fiedel 2006; Gruhn 2005). In Brazil two sites are dated as contemporaries of Clovis and demonstrate the variety of human adaptation to the environments of South America. Lapa do Boquette is a limestone rockshelter dating between 14,700 and 13,500 cal B.P. that has produced evidence of diverse foraging patterns in a population whose stone tools included hammerstones and unifacial knives but no lithic projectile points (Gruhn 2005). Farther to the North, the Pedra Pintada rockshelter dates between 13,310 and 12,910 cal B.P. and is evidence of human adaptation to tropical forest environments as well as the exploitation of a variety of aquatic and terrestrial resources (Gruhn 2004; 2005). One of the earliest discoveries in South America was the site of Fell’s Cave, discovered by Junius Bird in the southernmost part of Chile in 1936 (Jackson 2006). Fell’s Cave produced dates between 13,300 and 12,750 cal B.P. from a hearth associated with fishtail fluted points (Jackson 2006). It is clear that South America was teeming with a variety of environmental adaptations that were nowhere near as unidirectional as the contemporaneous Clovis technology of North America but were as, if not more, successful.

**North America**

In the western half of North America, where Paleoindian artifacts were first discovered and where it is assumed that humans first inhabited the New World, few sites date earlier than the Clovis time period. The Folsom site was dated in the late 1960s using radiocarbon methods and determined to date between 12,980 and 12,860 cal B.P. (Gruhn 2005; Meltzer et al. 2002). Predating Folsom, the Clovis site, which produced the
point type of the same name, dates between 14,000 and 12,200 cal B.P. (Haynes and Agogino 1966). Since these early finds many more Clovis and Folsom sites have been found, with Clovis points spread across the continent and Folsom points being unique to the Great Plains and the West. Of the sites in the West that date earlier, Bluefish Caves in the Yukon Territory of Canada has produced the oldest dates (Morlan 2003). The site has produced mammoth bones that have been flaked and resemble butchering, and a “whittled and polished caribou tibia resembling a broken fleshing tool” that date between 25,700 and 24,850 cal B.P. (Morlan 2003:129). Other tools and lithic remains dated by association produce dates ranging from 24,000 to 12,000 years ago (Morlan 2003). While the sites dates are contested, it does raise questions as to the timeframe of the first human migrations into North America. Two sites in Wisconsin have produced similar evidence of mammoth butchering and date to the pre-Clovis time period (Bonnichsen and Lepper 2005). The Mud Lake site mammoth remains and the Fenske site mammoth remains both date between 16,550 and 15,750 cal B.P. (Overstreet 2004). While few pre-Clovis finds have been made in western North America, the East has been more productive, with many more Clovis and pre-Clovis finds in the Southeast than in the western United States.

Eastern North America has produced a number of stratigraphically sound and datable sites from the Paleoindian period, and four notable sites which are likely pre-Clovis. Cactus Hill is located in Virginia and is a stratified site in a sand dune that has produced a number of lithics from pre-Clovis stratigraphy (Anderson 2005; Goodyear 2005). Cactus Hill has produced fluted points in a layer dated contemporaneous with Clovis, while also producing triangular points and prismatic blades that are associated
with two charcoal layers dating between 21,900 and 18,600 cal B.P. (Anderson 2005; Goodyear 2005). Dating slightly younger than Cactus Hill, the Meadowcroft rockshelter site in Pennsylvania is located on a tributary of the Ohio River that has produced a plethora of prismatic blades and radiocarbon dates, some from hearths and one from basketry, giving a conservative estimate that the site dates between 21,800 to 16,800 cal B.P. (Adovasio and Pedler 2005; Goodyear 2005). Another site in Virginia that has drawn attention is the Saltville site. Originally known for fossil finds, the Saltville site has now produced lithic flakes and bones that appear to be modified by humans dating between 18,000 and 17,000 cal B.P. (Anderson 2005; Goodyear 2005). The Saltville finds emphasize the need for interdisciplinary research, since paleontologists might not think to look for evidence of human interaction. In South Carolina, the Topper site has produced both bifacially and unifacially-worked cobble tools from over 2 meters below the surface and well below Clovis artifacts (Goodyear 2005). Though no charcoal has been found in context with these tools, the soils surrounding them have been dated using optically stimulated luminescence (OSL) and have given dates from 16,000 to 15,000 cal B.P. (Goodyear 2005).

The Southeast

In the southeastern United States, the occurrence of Paleoindian sites is prevalent. Each state has at least one notable find, and some have uncovered an abundance of sites from the knowledge of collectors and amateur archaeologists. Of sites in the Carolinas, the Taylor site in central South Carolina is one which collectors have known about for decades, gathering Palmer, Dalton, Clovis, and Suwannee points from the general
vicinity since the 1920s (Michie 1996). Excavations took place in 1970 to confirm the existence and extent of the site identified by collectors, which turned out to be a 35 acre site spanning from Clovis times to the Late Archaic (Michie 1996). Though radiocarbon dating of the site only produced dates between 5800 and 4900 cal B.P., the artifacts found date the site to much earlier. While Georgia does not have the big-name sites like some other states in the Southeast, the Society for Georgia Archaeology (SGA) conducted a fluted point survey in 1986 that recorded over 350 early points by 1995 and continues to record collections of artifacts today (Ledbetter et al. 1996). One collection that was documented, and later purchased by the Smithsonian, included over 78,000 artifacts from a single individual (Ledbetter et al. 1996). Similar to that of the SGA, the Tennessee Division of Archaeology has conducted a state-wide survey of Paleoindian artifacts in an attempt to get a better view of Paleoindian distributions (Broster and Norton 1996). Since 1988 over 2000 points have been recorded and plotted on a map and at least two of those have turned out to be very early Clovis site occurrences, the Carson-Conn-Short site and the Johnson site which both date between 16,500 and 11,000 cal B.P. (Broster and Norton 1996). Alabama is another state that has conducted a large Paleoindian point survey, using collectors’ data to add to their knowledge of Paleoindian sites in their state (Futado 1996). One of Alabama’s most well known sites is the Quad site located in northern Alabama on the Tennessee River. The site was discovered in 1951 by Frank Soday and has produced over 200 fluted points as well as attracting a number of artifact collectors since (Futato 1996). Also on the Tennessee River is a site from a slightly later period, Dust Cave. The Dust Cave site’s oldest dates are between 12,840 and 12,440 cal B.P., providing some of the most detailed data on Early Archaic populations as well as
the transition from the Late Paleoindian period (Driskell 1996). In northeast Mississippi excavations at the Hester site have yielded more than 500 Early Archaic and Late Paleoindian projectile points including three Clovis and two Cumberland points (McGahey 1996). Sites in Kentucky have produced a number of Paleoindian artifacts in association with extinct Pleistocene megafauna; unfortunately few dates have been obtained from the major sites. Exposed during construction on I-75, the Clays Ferry Crevice site has produced both mammoth bones and Clovis points (Freeman et al. 1996). Similarly, the Adams Mastodon site produced mastodon bones with apparent cut marks during the construction of a farm pond (Freeman et al. 1996). As part of WPA excavations in the late 1930s, the Parish Village site was found to contain four Clovis points, four other fluted points, and over 250 unifacial tools buried in late Pleistocene deposits; however, no radiocarbon dates were able to be obtained (Freeman et al. 1996).

One group of sites originally discovered by collectors, the Little River Paleoindian site complex, includes four sites that have revealed a general date range; the Adams site, the Boyd site, the Roeder site, and the Ezell site are located on a tributary of the Cumberland River and have produced Clovis points and other lithic remains that date between 15,900 and 15,050 cal B.P. (Freeman et al. 1996). In Arkansas, the Arkansas Archeological Survey has spent 30 years documenting nearly 200 fluted points found throughout the state in order to produce a site distribution map of Clovis-age populations (Gillam 1996). The results of their research have shown that the majority of sites are within 30 km of Crowley’s Ridge, an area of high-quality chert sources and streams in the alluvial valley of the Mississippi River (Gilliam 1996). It is clear that there is a wealth of information on Paleoindians in the Southeast, and researchers at the University of Tennessee have
been able to show that, of the known sites, the majority of Clovis-age artifacts are found in this region (PIDBA 2006). The Paleoindian Database of the Americas (PIDBA) was created by these researchers and their data demonstrate this phenomenon well (Figure 4).
Florida

Florida sits on the fringe of what is considered the Southeast, but there is no lack of Paleoindian sites in this state either. One of the first Paleoindian sites to be found in Florida with intact stratigraphy is the Silver Springs site in northern central Florida. The Silver Springs site produced gravers, flake tools, a Suwannee point base, and a Clovis point all found in context below Early Archaic artifacts, demonstrating the relative age of the site, as well as the temporal placement of Suwannee points which are now assumed to slightly post-date Clovis (Mason 1962). Finds at the Wakulla Springs Lodge site, south of Tallahassee, confirmed the relative age of Suwannee points and the existence of Paleoindians in Florida during Clovis times. Between 1930 and 1970, collectors and divers had found Suwannee points, Simpson points, Clovis points, bone projectile points, and mammoth, mastodon, sloth, tapir, and horse remains in the springs (Jones and Tesar 2000). In the late 1980s CRM excavations, with the help of volunteer workers, uncovered a Suwannee or Simpson preform, a Clovis-like point, a number of unifacial scrapers, and many Early Archaic tools and points that confirmed what collectors had previously found at Wakulla Springs (Jones and Tesar 2000). Another site that would likely not have been found without the work of CRM is the Harney Flats site in Tampa, which was discovered during construction on I-75. The site has been identified as a Paleoindian base camp, containing Suwannee and Simpson points stratigraphically very close to Early Archaic assemblages found at the site (Daniel and Wisenbaker 1987; Dunbar 2006). Interestingly, no Clovis points were uncovered, and discerning where the Paleoindian site ends and the Early Archaic component begins appears nearly impossible (Daniel and Wisenbaker 1987:34-35). Another significant site that appears to be a base
camp is the Butler site in the Big Bend region of north Florida, which has produced modified bone tools and the largest number of Paleoindian diagnostic tools of any site in Florida (Dunbar and Webb 1996). Whether due to sampling bias or because it was a choice location for Paleoindians, the Big Bend has produced a plethora of Paleoindian artifacts and Pleistocene megafaunal remains, including a number of flakes, fluted points, Suwannee points and preforms, and Early Archaic Bolen points all found off shore from the Big Bend region (Faught 2002; 2004). Though few Paleoindian sites have produced radiocarbon dates in Florida, those that have show that humans occupied much of the state at the same time or earlier than the rest of the Southeast. The Page-Ladson site on the Aucilla River has produced dates between 15,200 and 14,250 cal B.P. in association with lanceolate points, waisted Suwannee points, bone and ivory tools, and Pleistocene megafauna (Dunbar 2006). Not much younger, the Sloth Hole site on the Aucilla River dates between 14,650 and 14,050 cal B.P. in association with flaked mastodon bone tools, Clovis points, and waisted Clovis points (Dunbar 2006; Hemmings et al. 2004). The Little Salt Spring site, South of Sarasota, dates between 14,700 and 13,400 cal B.P. in association with a wooden stake and a tortoise carapace (Clausen et al. 1979). While there is some skepticism about whether the stake was made by humans or by natural processes (Thulman 2006), it seems difficult to argue that natural processes caused the stake or spear to pierce the tortoise carapace. Another site that has been submerged for thousands of years is the Alexon Bison site in the Wacissa River of northwest Florida. Dating between 13,330 and 12,920 cal B.P., the site contained the remains of an extinct bison as well as a broken projectile point imbedded in the skull (Webb et al. 1984). Approximately 5 km downstream of the Alexon Bison site, the Ryan/Harley site is
situated on the Wacissa River 1.5 km upstream from the Page-Ladson site (Dunbar et al. 2005). The site has produced Suwannee points and preforms, ivory shafts from mastodon tusks, a number of unifacial tools and scrapers, Pleistocene megafaunal remains, and relative dating that places the site between 11,000 and 10,500 years ago (Balsillie et al. 2006; Dunbar et al. 2005). Florida clearly has a wealth of Paleoindian data; however few sites provide the necessary remains to return trustworthy radiocarbon dates or the intact stratigraphy needed to achieve decent relative dating, which is why many sites are temporally placed by the presence of diagnostic artifacts that have established time periods associated with them.

**Diagnostic Tools**

Depending on which source is consulted to determine the temporal range for diagnostic Paleoindian artifacts, the ranges and the diagnostic artifacts for Early and Late Paleoindian as well as Transitional Paleoindian and Early Archaic differ slightly (Figure 5). In Florida, and in much of the Southeast, Ripley Bullen’s (1975) point guide is frequently used for point identification. According to the Bullen guide, Clovis points date to around 12,000 B.P., Suwannee and Simpson points date to around 11,000 B.P., Beaver Lake points date to around 9,500 B.P., Hardaway points date to around 9,000 B.P., Greenbriar points date to around 8,500 B.P., Stanfield points date to around 7,000 B.P., and Marianna points date between 10,000 and 9,000 B.P. Using Bullen’s division of cultural periods, this places the Clovis, Suwannee, and Simpson in the Paleoindian period and places all of the other point types in the Transitional and Early Archaic periods (Bullen 1975). Other sources tend to agree with the general succession of points, but
differ in their divisions and in their assigned date ranges. Barbara Purdy’s (1986) stone tool guide places the Clovis, Suwannee, Simpson, and Beaver Lake points, as well as Waller knives, in the Paleoindian period from 12,000 to 10,000 B.P. Purdy (1986) places the Hardaway, Greenbriar, and Bolen points in the Late Paleoindian period from 10,000 to 9,000 B.P. Another point guide lists Clovis as Paleoindian from 14,000 to 10,000 B.P., and Suwannee, Simpson, Beaver Lake, Cowhouse Slough, Chipola, Marianna, Greenbriar, Hardaway, Stanfield, and Big Sandy points as either Transitional or Dalton period points from around 10,000 to 9,000 B.P. (Sowell and Nowak 1990). An article in *Quaternary International* lists Clovis as Early Paleoindian from 11,000 to 10,500 B.P., Simpson, Suwannee, and Beaver Lake as Late Paleoindian from 10,500 to 10,000 B.P.,
and Greenbriar, Hardaway, and Big Sandy as Early Archaic from 10,000 to 9,500 B.P. (Ellis et al. 1998). Finally, a collector’s pricing and identifying guide lists Clovis, Suwannee, Simpson, and Beaver Lake points as Paleoindian from 11,500 to 10,000 B.P., Cowhouse Slough, Marianna, and Stanfield points as Transitional from 10,500 to 9,000 B.P., and Chipola and Hardaway points and Waller knives as Early Archaic from 10,500 to 7,000 B.P. (Overstreet 2007). Though many of the cultural assignments and time periods vary, this is how sites are given a temporal and cultural association when radiocarbon dates are not available.

For this research Clovis, Suwannee, Simpson, Cowhouse Slough, and Beaver Lake points are considered Paleoindian, while Big Sandy, Chipola, Greenbriar, Hardaway, Lerma, Marianna, and Stanfield points, as well as Waller knives, are considered Transitional. For the purposes of this research Paleoindian refers to anything before 10,000 B.P., while the Transitional period refers to artifacts that appear to date within the range of approximately 10,000 to 7,000 B.P. The time frames given here are uncalibrated, since most of the point guides give dates that are either uncalibrated or do not specify. These temporal associations are based on the general consensus among the projectile point identification sources used; however, it is clear that the ranges change frequently as more research and analyses are performed, and what differentiates the Paleoindian, Transitional, and Early Archaic periods is often vague.
Chapter Four: Laws, Ethics, and the Isolated Finds Program

Introduction

Most of the work in this thesis is based on privately held artifact collections. Depending on where collectors obtain their finds there can be serious ethical and legal issues in the United States. While prehistoric artifacts from private lands may be owned, those found on public lands can not be privately owned. Some of the materials described in this thesis have come from public lands, but the ethical implications are not entirely superficial. The purpose of this chapter is to justify the documenting of private artifact collections through a defense of four basic premises: 1) archaeology’s purpose is to educate the public; 2) collectors have provided a wealth of data for archaeologists in Florida; 3) ethics are principles that guide laws and are defined by a field’s practitioners; and 4) the Florida Isolated Finds Program’s (IFP) benefits outweigh its flaws. As members of the general public, collectors are stakeholders in the past, whose habits, hobbies, and beliefs will not change even if archaeologists turn their backs. If we can keep a working relationship with the public (i.e., collectors) then there can be a more open discussion of the ethical and professional issues with casual artifact collecting, the importance of context and provenience, and the locations of isolated finds and sites that are eroding or deteriorating. Restricting collectors with legal ramifications merely obstructs the dialogue between the public and professional archaeologists, which consequently closes off data to archaeologists and knowledge of the past to the public.
History

Archaeology in North America has evolved through a number of foci, but its purpose mostly has been to benefit or educate the public. While its earliest history on the continent dealt with antiquities collection, romantic adventure, documentation of large-scale architecture, and eugenics (Thomas 2000), the goals were still directed toward educating or disseminating knowledge of the past (whether exotic, local, accurate, or manipulative) to the public. As the country dealt with a growing divide between rich and poor during the Great Depression of the 1930s, the WPA allowed archaeology to stray from the ivory tower and include the public in data recovery, a public which had already established a pastime of artifact collecting, and an appreciation for the history of the land. In many cases, the locations of WPA excavations were guided by local collectors who knew of sites rich with artifacts and wanted to contribute their knowledge in the creation of local histories (Wauchope 1966). The processual and post-processual work that grew from the WPA projects heavily criticized the work of WPA archaeologists for their lack of discriminative digging and their large-scale data recovery plans that lacked funding for interpretation and curation; however, the work and theory of processual and post-processual archeology is still dependent on the vast amounts of data recovered from the WPA period. The seemingly new and popular concept of public archaeology, where the public is involved in all stages of the archaeological process and the research is guided by public desires, is a concept that has subconsciously been a part of archaeology since it began on this continent (Jameson 2004). The work done with the WPA was merely the instigator for public awareness and discourse. Proof that archaeology has always been for the people can be seen in the major funding of excavations and archaeological field
work (e.g., the Smithsonian and the National Geographic Society). Organizations that thrive off public interest and education have been supporting archaeology on this continent since as early as 1826, when James Smithson willed his fortune to the United States, in the form of the Smithsonian Institution, for the benefit of furthering knowledge (Smithsonian Institution 2007). Public archaeology is not new, but discussion of how the public should be included is what the issue has become.

In Florida, collectors have been a mainstay in the production of archaeological knowledge since at least the early 1900s. In the 1920s and 1930s, Clarence Simpson and his family collected thousands of artifacts from rivers near High Springs in northern Florida (Milanich 1994:41). In fact, large collections have been produced from rivers throughout Florida by big-name amateur archaeologists such as Clarence Simpson, Ben Waller, and Don Serbousek. The Simpson family is known for their contributions to knowledge of Paleoindians (e.g., Simpson Points), as is Ben Waller (e.g., Waller Knives) (Knight and Munroe 2004). Also, both Waller and Serbousek were responsible for Paleoindian discoveries on the Aucilla River (Knight and Munroe 2004). Most of these significant finds were donated to the state, but other artifacts that were less spectacular often stayed in the hands of the collectors. Some people have even argued that Clarence B. Moore’s work in the early 1900s was little different, since he was looking for outstanding finds that could be sent to museum collections outside of the state (Milanich 1994:5). Another dedicated collector was the late Hub Chason. Born in 1914, Chason was a history teacher who discovered a number of sites and artifacts in the name of adventure and published a book of the artifacts he found in the Chipola River (Chason 1987). His book accurately portrays the perceptions of many (non-archaeologist)
Floridians, emphasizing the adventure of the find, the beauty of the artifacts, and the skill of the artifact’s creator. Similarly, other scholars acknowledge this romanticism: “there is nothing like the real thing to pique a child’s interest” (Kwas 2000: 340); or noting “the thrill of discovery inherent in archaeology” (Heath 1997). While Chason’s book is inaccurate and based on limited sampling (Purdy 1989), the book reflects a history of stakeholders, whose opinions and perceptions are often ignored by academics. Chason characterizes his own book as “a further attempt to persuade archaeologists to take advantage of the large number of extensive river collections of Florida projectile points – and finish the classification job before such collections become widely dispersed” (Chason 1987:9). Many casual collectors, like Chason, are also flintknappers, who continue a stone working tradition that may disappear without them. These collectors have a different connection and appreciation for stone tools that, I think, allows them some claim to that heritage and tradition. One collector and knapper that I talked to is now teaching survival training to the military, possibly passing on the stone-working tradition as a survival skill. Another collector told me about working on a dredge, clearing river bottoms so ships could get through. He explained how the dredge workers would hear the artifacts being pumped from the river bottom, and run to the output to collect them. Many of these workers cannot understand why the federal government is allowed to pump out and destroy artifacts, while divers are not allowed to keep what they recover (AAPC 2007; Hollowell 2006). Archaeologists need to account for the multiple values placed on artifacts; artifacts can be objects, data, art, or a method of survival, and if we only see them as data then we have failed as anthropologists. While academics often feel it is their duty to guard knowledge, shunning collectors will only widen the
divide between archaeologists and the public. Without communication between collectors and professionals the danger for looting and selling artifacts increases, and the public’s understanding of how histories are produced becomes obscured.

Examples of how wrong things can go are widespread. The website http://www.treasuresites.com is clearly the result of a lack of dialogue between the collectors who produced the website and archaeologists in the state. The series of web pages give coordinates and directions to locations throughout Florida where treasure can be found, along with details about what kinds of objects can be found (e.g., fossils, arrowheads, jewelry). What the site promotes is illegal, and other resources along these lines are prevalent. A search on e-Bay.com for artifacts returns nearly 3000 results, and a search on Amazon.com for books about artifacts returns almost 100,000 results, many of which are artifact-value guides. Preventing these occurrences is a matter of both law and education. The laws only specify that artifacts cannot be removed and sold from certain areas, and once the artifact is removed it is fairly difficult to determine where it was taken from. If people realized the harm they were doing then they might decide to change their actions, but if their morals, ethics, or laws do not hinder them then their actions will continue as they have in the past.

Laws and Ethics

Laws and ethics guide the work of professional archaeologists. It is my understanding that, while laws are more static and provide penalties for failure to comply, ethics are guidelines defined by the beliefs of a professional organization’s members and
practitioners are less likely to incur penalties for breaking these more dynamic regulations.

There are a number of laws that protect archaeological sites, artifacts, and materials of cultural significance. These laws can be divided into those protecting federal and tribal lands, and those protecting state lands (including navigable waterways).

In the United States, federal regulations and protection of archaeological materials began with the Antiquities Act of 1906 which allowed for special protection of cultural and natural resources of national significance (McMannamon 2000a). The National Historic Preservation Act of 1966 (NHPA) furthered the protection set forth by the Antiquities Act by creating a National Register of Historic Places and an advisory council to monitor the preservation of those sites (McMannamon 2000b). Similarly, the Archaeological and Historical Preservation Act of 1974 required federal agencies to recover archaeological data and document historic properties that would be impacted by their development projects (McMannamon 2000c). The Archaeological Resources Protection Act of 1979 (ARPA) reiterated many of the protections established with the earlier laws, while drastically increasing the monetary penalties for offenses (McMannamon 2000d). These laws are all enforced by the Department of the Interior, with most of the actual preservation, enforcement, and legwork being performed by the National Park Service. The main goal of all of these laws is to preserve the national cultural heritage, and the main goal of ARPA was specifically to attempt to curb the looting and vandalizing of federally-managed archaeological sites. While other laws stipulate more specific issues (e.g., Abandoned Shipwreck Act of 1987, Native American
Graves Protection and Repatriation Act of 1990), the four discussed above demonstrate the purpose, extent, and power of federal archaeological legislation.

In Florida, state laws that protect cultural heritage can be found in the Florida Statutes (F.S.), chapter 267, also known as the Florida Historical Resources Act. Chapter 267 is responsible for the creation of the Division of Historic Resources (DHR), which is required to “protect and administer historical resources abandoned on state-owned lands or state-owned sovereignty submerged lands” (F.S. 2006: 267.031(5)(o)). State statute 267.0612 stipulates that the Florida Historical Commission (FHC) be created to provide advice and public involvement in DHR decisions. Mostly, chapter 267 outlines the responsibilities of state agencies to report the cultural resources that are on their lands to the DHR. The law stipulates that all cultural materials found on state lands belong to the DHR, and the division is free to do what it pleases with the artifacts (e.g., loan, exchange, sell, destroy). However, the law also specifies that no person may dig, sell, exchange, or destroy any archaeological remains from state-owned lands without a permit. As per §267.115, the “division shall acquire, maintain, preserve, interpret, exhibit, and make available to the public objects with intrinsic historical or archaeological value relating to the history, government, or culture of the state” (F.S. 2006), which “may include tangible personal property.” The one exception to this rule is §267.115(9), which states that “the division may implement a program to administer finds of isolated historic artifacts from state-owned river bottoms whereby the division may transfer ownership of such artifacts to the finder in exchange for information about the artifacts and the circumstances and location of their discovery” (F.S. 2006). While this provision applies to state-owned river bottoms and chapter 267 only applies to state-owned land, the laws of ownership of non-
navigable waterways are less clear; meaning the artifacts in those waters are not easily protected by state or federal regulations. Clearly Florida has laws that mirror what the federal government has legislated; however the Florida Statutes leave the actual protection and preservation in the hands of the DHR and the FHC.

Archaeological codes of ethics are guidelines meant to “assist professionals in meeting the specialized goals of their profession within the more complex circumstances of the greater society in which they live and work” (Lynott 2003:25). The following five paragraphs examine the main principles, the purpose, and the enforcement of professional archaeologists’ codes of ethics, starting with the most all-inclusive organizations and working down to the local. The five societies addressed include the World Archaeological Congress (WAC), the Register of Professional Archaeologists (RPA), the American Anthropological Association (AAA), the Society for American Archaeology (SAA), and the Florida Anthropological Society (FAS). While similar principles run through all of these organizations, each society has a particular focus and mission that guides its ethics.

The WAC has three codes that guide its ethical responsibilities: the First Code of Ethics, the Vermillion Accord on Human Remains, and the Makau-rau Accord on the Display of Human Remains and Sacred Objects. The First Code of Ethics contains eight principles to abide by, and seven rules to adhere to (WAC 2006). The principles and rules are focused on indigenous rights and the need for consent, cooperation, and communication when working with archaeological remains that may have indigenous stakeholders (Lynott 2003; Smith and Burke 2003; WAC 2006). The two accords reiterate these points, stressing that human remains hold a great amount of scientific
value but science should not be done at the expense of indigenous stakeholders (WAC 2006). Because the WAC is a global society, its ethical principles need to be broader than the ethics of other organizations; however, with its broad ethics, some issues are never discussed.

The RPA’s Code of Conduct and Standards of Research was established in 1998, and modeled after the 1976 ethical code of the Society of Professional Archaeologists (SOPA), the RPA’s predecessor (Lynott 2003; Smith and Burke 2003). The code outlines what is expected of professionals, including working scientifically with accepted methods, not misinforming the public or falsifying data, writing clearly, and publishing (RPA 1998). Essentially the RPA code is an expectation that each archaeologist will contribute to the field and not do anything detrimental. The RPA sets forth standards that are expected from professional archaeologists, mainly in the field of cultural resource management.

Also established in 1998, the Code of Ethics of the American Anthropological Association has an all-encompassing focus similar to that of the WAC. Unlike other codes, the AAA statement acknowledges that most individuals will be obligated to a number of ethical guidelines, stressing that each set of codes is not binding, but for the purpose of fostering discussion (AAA 1998). The AAA code emphasizes that anthropologists have an obligation to the people they study, science and scholarship, students, and the public (AAA 1998; Smith and Burke 2003). The AAA does release specific ethical statements when pertinent ethical issues arise (e.g., AAA President’s Statement on Looting in Iraq) (AAA 2003), but their overarching principles are less specific (AAA 1998). The code is meant to allow anthropologists to acknowledge the
needs and desires of all possible stakeholders that their research may affect. This code of ethics is not meant to be an end, but a starting point for discussing professional responsibilities.

The SAA’s Principles of Archaeological Ethics were first established in 1996, and are a set of eight guiding statements that are more specific than those of the WAC or the AAA. The SAA principles state that archaeologists are stewards of the archaeological record, they are accountable for the professionalism of their work, they should avoid promoting the commercialization of artifacts, they should work to educate the public, they should work to make intellectual property publicly accessible, they have an obligation to preserve and publish data, and they have an obligation to perform research only when it is within their means (SAA 1996; Smith and Burke 2003). While all of these principles center on preserving the past for the public, the focus is more on the objects and data than on the people (Groarke and Warrick 2006). Groarke and Warrick argue that the stewardship principle is one of great value, but it should be modified so that it is more directed toward stakeholders than data and objects. Where the WAC ethical principles are centered on people, the SAA principles are focused on scientific progress.

On the local scale, the FAS Statement of Ethical Responsibilities contains five sections or obligations that its members should abide by. The first obligation is to preserve sites in Florida through obeying laws, reporting to the DHR, and reporting and preventing site destruction or looting (FAS 2004). The second obligation is to high-quality excavation, analysis, documentation, and publication. This principle echoes most of the RPA and SOPA standards of professional research. The third obligation is to
science over commercialization of cultural material. The third section requires that FAS members follow the terms of the UNESCO convention against the illegal exchange of cultural material. The final two sections emphasize the obligations that FAS members have toward peer-communication and dissemination of data within and outside of the FAS academic circle. The overall objective of these principles is to make sure that FAS members are performing professional, legal, ethical, and scholarly archaeology that contributes to heritage preservation.

These ethical codes are guidelines that have little enforcement other than castigation by one’s peers (e.g., the RPA can expel members for not following their code, but they cannot prevent them from continuing to do archaeology), but they represent a consensus of the beliefs of each society’s members. As noted by the AAA Code of Ethics (1998) and Groarke and Warrick (2006), individuals have a number of ethical codes that they are guided by and above all the obligations of anthropologists are to the people studied and other living stakeholders in their research. While some codes provide strict guidelines and others only give broad principles, the gist of what is being said is the same: archaeologists have an obligation to preserve human heritage, but not at the expense of stakeholders. Though these principles can conflict, the ethical codes are merely agreements by practitioners in the field and each individual must make their own decisions as to which issues are most important.

**Isolated Finds Program (IFP)**

As allowed by §267.115(9), Florida’s Isolated Finds Program (IFP) was put into effect in 1996 and then put to an end in 2005. The program allowed isolated artifacts to
be collected from state-owned rivers, with the provision that the finder report information about the artifact and its location to the state (Wheeler 2007). Collecting was not allowed from known sites, artifacts were required to be reported to the DHR within 30 days of the find, and the state was allowed 90 days to decide whether the artifact was significant enough for their reclamation (BAR 1996). The Bureau of Archaeological Research (BAR), a division of the DHR, was in charge of managing the IFP, and law enforcement was expected to monitor activities near state waterways. During its duration the IFP reported more than 10,000 artifacts, and geographic analyses show that only 10% appear to have come from known sites (Wheeler 2007).

In 2003 the FHC ordered an evaluation of the IFP for the purpose of discontinuing or modifying it. The DHR held three public meetings between 2003 and 2005 to hear suggestions and comments on the program. Only 50 people attended the first meeting, and only 28 attended the second (BAR 2004a). The concerns brought up included issues with promoting the looting and selling of artifacts, possession of human remains and grave goods (the major complaint by representatives of the Miccosukee and Muscogee tribes), and the enforcement of a program that was not defined well to law officers (BAR 2004a; 2004b; AAPC 2004a). In fact, there is another Florida Statute that essentially gives permission to collect fossils in any state river (F.S. 2006: §1004), and most collectors do not discriminate between cultural and fossil finds. There were four common suggestions made for improving the program: 1) create a permit system; 2) determine which rivers or areas of rivers are off limits; 3) create a public archaeology training program; and 4) grant amnesty to older collections so the data can still be gathered (BAR 2004a; 2004b; AAPC 2005a). The general consensus among state
officials, law enforcement, and professional archaeologists was that the program had
“suffered from inadequate rule making” (BAR 2004a), but if it were modified to account
for all stakeholders it had potential.

The Avocational Archaeology and Paleontology Council, Inc. (A APC) is an
organization created by 153 IFP participants to represent the stakeholders who supported
the IFP (AAPC 2007). The AAPC runs a website that posts a number of IFP resources.
The organization promoted the reinstatement of the IFP for a number of reasons: without
the program, any man, woman, or child who disturbs any lithic or ceramic fragment on
the river bottom is subject to prosecution; the state routinely dredges and disturbs
thousands of cubic yards of sediments without prosecution; and state-owned really means
publicly-owned (AAPC 2007).

To support their mission the AAPC has posted letters written to state officials by
archaeologists, collectors, and law enforcement agencies on their website, all asking for
the reinstatement of the IFP. A letter from Scott Mitchell, a collections manager from the
Florida Museum of Natural History, stresses the loss of data that will occur if we “stick
our heads in the sand” (AAPC 2003). Mitchell notes that many large, private collections
recovered from the rivers of Florida have been donated to the public from families with a
history of artifact collecting (e.g., Simpsons, Ohmes, Means, and Hendrix). On behalf of
the Florida Archaeological Council (FAC), the professional organization of the state,
Robert Austin wrote to the Secretary of State, emphasizing that the IFP was not perfect,
but it did result in information that would otherwise be lost (FAC 2004). Austin also
noted that collecting would continue with or without the IFP. Established archaeologists
Barbara Purdy and Albert Goodyear both wrote to the chair of the FHC, Judy Bense,
arguing for the retention of the IFP. Goodyear outlined the isolated finds program in South Carolina that works with river divers by issuing licenses and creating training workshops (AAPC 2004b). Goodyear stressed that the IFP and other similar programs generate usable data that would otherwise require massive public funding to produce; South Carolina’s program is responsible for locating over 80% of their underwater sites (AAPC 2004b). Purdy echoed Goodyear by saying “professional archaeologists would know zilch about the archaeological record without input from amateur collectors” (AAPC 2004c). The director of the Division of Law Enforcement, Colonel Julie Jones, wrote to the acting chief of the BAR: “unless the officer observes the person collecting in a prohibited area, there is no way to tell where the artifact came from,” and “overall, we recommend allowing isolated find collection on all state lands” (AAPC 2004a). While not the view of an archaeologist, this letter underlines the views of law enforcement officials who find it difficult to discriminate between isolated and non-isolated artifacts while enforcing other laws as well. In a letter by collector and professional geologist Harley Means to the FHC, Means outlined the past work of collectors and avocational archaeologists including Clarence Simpson, Ben Waller, Jarl Malwin, Brad Cooley, Tom Greenhalgh, Dick Ohms, Alvin Hendrix, Don Serbosik, Buddy Page, Bruce Means (his father), and himself (AAPC 2005b). As a geologist, Means emphasized the lack of intact stratigraphy on most of Florida’s river bottoms. Means’ letter calls for the reinstatement of the IFP in order to protect the vulnerable river sites that will likely never be discovered in its absence (AAPC 2005b).

The AAPC even drafted a proposal to codify and improve the IFP, asking for a permit system and encouraging an open relationship between professional and
avocational archaeologists (AAPC 2005a). In the absence of the IFP, the FAC has now issued a revised statement on collecting that negates the comments made by the former president Robert Austin. The new statement released by James Miller rescinds Austin’s letter and claims that the FAC could not reach a consensus on whether any program should exist at all, though there was a general agreement that the collector-archaeologist relationship is not without value (FAC 2005).

In an attempt to gain more insight into the beliefs and ethics of archaeologists in Florida, I e-mailed seven archaeologists throughout the state to get their opinions on the program. These archaeologists included state, public, and academic professionals ranging from FHC and BAR members to Florida Public Archaeology Network (FPAN) members, museum collections managers, and university professors. The questions I posed focused on two issues, the Isolated Finds Program and documenting collectors’ finds: “What is your opinion on the Florida Isolated Finds Program? What were its largest benefits and criticisms, and was the program successful in your opinion?” and “Should collectors’ artifacts be documented, or does the attention given to them cause more harm than good? Does your answer to this question change depending on whether the artifacts were acquired legally or illegally (i.e., before, during, or after the IFP, or on federal, state, or private land)?” (See Appendix B). Only three of the seven archaeologists responded to the questions and their responses are outlined below.

Robert J. Austin, Ph.D. is the Vice President of the CRM firm Southeastern Archaeological Research, Inc. and in the past has been Executive Vice President of Janus Research, and President and Vice President of the FAC. Austin has been working in Florida archaeology since the 1980s, and earned an M.A. from the University of South
Florida and a Ph.D. from the University of Florida. In response to my questions about the Isolated Finds Policy, he comments that “collecting in Florida rivers is going to occur no matter what, so why not get some information?” (personal communication, March 28, 2007). Austin continues by noting that the IFP “made it possible to participate and enjoy the thrill of discovery.” In response to the question of whether collections should be documented, Austin (2007; Appendix B) responds positively:

Collectors know where the best sites are and the process of documenting collections not only provides the profession with valuable information, it enables us to enlighten and perhaps change the behaviors of some collectors [...] honestly, most artifacts are obtained illegally [...] I want the information and I try to let the people I am getting it from know that digging up sites is wrong and trespassing is wrong.

Austin’s response is very sincere, and it emphasizes the need for the public to understand the purpose of archaeology and the need for archaeologists to move toward public education.

Jerald T. Milanich, Ph.D. is the retiring Curator in Archaeology at the Florida Museum of Natural History and a professor of Anthropology at the University of Florida. Milanich’s response to the questions about the IFP is honest, as well as telling: “I must say that other than handing out literature about the regulation, I never ran into a single instance of its being used or followed” (personal communication, March 30, 2007). The response given regarding collections documentation is also interesting. Milanich (2007; Appendix B) states that artifacts known to be illegally obtained or those that “may make their way to the antiquities market” should be reported to the authorities and never authenticated by archaeologists. He explains how he goes about dealing with collectors:

I generally look, deriving information and sometimes forming a bond with the person that eventually allows the collection to go into public ownership. Those
collections that are important are the ones with provenience data; others are pretty much worthless, since we have time-space type data. But then how about a gold bird effigy ‘hair decoration’ from ‘south Florida.’ No provenience data, but still of great stylistic interest, etc. Those are the tough ones, and need to be dealt with on a case by case basis [...] I do not believe there is a single answer or protocol (2007; Appendix B).

Milanich addresses some key issues; while the collections may be illegally obtained, they might contain information that completely rearranges our perceptions of the past. He also touches on a topic covered in the AAA code of ethics: individuals need to decide their own ethical principles and beliefs.

Richard W. Estabrook, M.A., RPA, was the Director of the West Central Region of FPAN and is now the Director of the FPAN Crystal River office, as well as a graduate of the Public Archaeology program at the University of South Florida. Constantly dealing with the public and their perceptions of archaeology, Estabrook provides a unique look into dealing with collectors. In response to the questions about the IFP, Estabrook explains that he has always supported the program or some form of professional-public cooperation (personal communication, April 3, 2007). He explains what flaws he sees in the old program, stressing that the divide between professionals and the public is only growing:

In my mind, the project was under-funded and under-supported from the start. Many of the artifact collectors felt that it was simply a way for the professionals to ‘keep an eye on them’ and to monitor their activities. When ‘good’ sites were found, many felt that the professionals would ‘take over’ the site and exclude them from the excavations and take much of the credit for the find. These actions are not without precedent in Florida archaeology (2007; Appendix B).

Estabrook sees the removal of the IFP as widening the gap between archaeologists and the public, and he notes that the higher penalties for river collectors will not likely hinder their activities. In response to the questions about documenting collections, Estabrook
makes a few exceptional and thought-provoking comments. He notes that with “the increase in the number and talents of local flintknappers, artifact re-creators, and other ‘experimental’ prehistory types [...] many points that were originally sold as ‘reproductions’ have ended up in collections as legitimate prehistoric artifacts” (2007; Appendix B). Estabrook also comments that the question of whether an artifact was legally or illegally obtained is irrelevant once provenience data are lost, which is why “collections that contain materials that have been bought or traded for are the most suspect” (2007; Appendix B). Estabrook emphasizes what most other archaeologists seem to support; provenience and context are the most important aspects of an artifact, but if they have already been lost then saving as much data as possible and educating the collector are the obvious next steps.

It is apparent that many professional archaeologists in the state support some continued form of collection documentation, but they are also torn because of the fear of promoting artifact commercialization. However, even the creator of the FAC’s first set of standards and guidelines acknowledges that the habits of collectors will not change just because laws and professional ethics do, while he also emphasizes the importance of using the scientific method, documenting the context of artifacts, and working with the public (Hardin 2002; Tesar 2001). Florida’s archaeological history, for better or worse, includes collectors and has depended on their finds in the past, so as we move to the future public involvement and outreach must only increase.
Conclusions

As outlined above, restricting collectors with legal ramification merely inhibits the dialogue between the public and professional archaeologists, which in turn closes off data to archaeologists and knowledge of the past to the general public. The assortment of federal and state laws pertaining to archaeology all focus on a general preservation of cultural heritage and national history. Even the IFP was designed to preserve those artifacts that had washed away from sites upstream or that were lost in the rivers by their creators long before. Unfortunately the wording of the law was not clear, and isolated became a term that was ambiguous to law enforcement, collectors, and even some archaeologists. Similarly, the array of ethical codes suggest that preservation, stewardship, and a respect for heritage are the areas where archaeologists should be focusing, but there is also some hypocrisy in these codes. The SAA principles call for archaeologists to be stewards of the archaeological record, but also work to fight against artifact commercialization and looting. Unfortunately, in some cases SAA members must choose which is more important – to document and save artifacts from destruction, while possibly promoting commercialization and looting by acknowledging the actions of the collector; or to turn their backs to the collector, knowing that the data will now be lost forever but they have not contributed to the commercialization. By choosing not to publish any articles that contain data from collectors, the SAA makes it clear which choice it expects archaeologists to make. However, this principle is one that is discussed in psychology, and the underlying logic is faulty. If a person is mugged in a crowd of people, no one will call the police because everyone assumes someone else will; but the person still gets mugged. Similarly, just because an archaeologist chooses to shun a
collector and not document a collection does not mean the artifact will not end up on e-Bay, it just means the information is permanently lost. As noted by Anne Pyburn (2003:171), “archaeologists have to relinquish the idea that if everyone understood the practice and the value of science and archaeological research, then everyone would agree that it was a good thing.” As public archaeologists we must account for the value of sound scientific and archaeological research, but we must also account for other ethical principles, including our responsibilities to the public and to stakeholders.

To improve the Isolated Finds Policy, I support the use of a permit system similar to what is used in South Carolina. I also suggest that surface collection be allowed on state lands and waterways, providing that no digging occurs and the area is not a known site. The reason for allowing this is that surface artifacts will be picked up either way; so, if archaeologists can encourage public involvement and communication in a structured way that allows for the exchange of information then data will not be lost and the public can participate in the adventure of discovery. The previous policy on reporting finds seems adequate, but the DHR should work to extract more information from collectors. One method of gaining better cooperation would be to instigate some sort of public education program similar to that of South Carolina or Arkansas (AAPC 2004b; Davis 1990). These programs would not only provide public awareness of archaeology, but would comfort or reassure those who see archaeology as a scientific colonialism that moves artifacts from their original locations to the basements of government buildings (Hollowell 2006). For now, Florida’s IFP has been discontinued, and there is no move being made to reinstate it. It is my belief, supported by the opinions examined, that in the absence of the IFP, archaeologists should continue to work with collectors, documenting
their finds while encouraging them to work with archaeologists and respect our professional codes of ethics, and educating them about proper methods of data recovery while emphasizing the pertinent laws.

While there is much contention surrounding the collecting of artifacts, the University of South Florida has had an ongoing public archaeology research program in the Apalachicola River Valley for over three decades that has educated collectors, developed a working relationship with amateur archaeologists, and benefited greatly from the knowledge that locals have of the area. The public archaeology in this valley was started by Dr. Nancy White of the University of South Florida, with the first archaeology day program held in 1976 and a number of other public programs held throughout the past 30 years. The archaeology day program was designed to allow locals to come and learn about the history of their region and to bring in artifacts that they had found in the valley. This program educated the public on documenting their finds and explained the laws pertaining to artifact collecting, while also allowing USF to obtain valuable information about artifacts found that would otherwise be lost. The USF research has found that locals have been collecting archaeological and paleontological specimens from the lands and rivers of the Apalachicola Valley for centuries, and some of the worst offenders of the laws have been law-enforcement officials. The research has also shown that collectors have a fascination with Paleoindian artifacts because of their extremely old age and rarity. When I entered the USF public archaeology program, long-term relationships had been made with many collectors and their families in the valley, allowing me to meet these collectors and document their finds. Without the relationship between USF and the collectors and amateur archaeologists in the Apalachicola River
Valley, the research in this thesis would have never been possible. The following chapters examine the known data on Paleoindians in this river valley and the data obtained from artifact collectors.
Chapter Five: Known Paleoindian Sites

In the 30 years of USF research in the Apalachicola River Valley, a number of large-scale systematic site surveys have been performed, producing many technical reports, graduate theses and dissertations, and information on over 1000 archaeological sites in the valley. In 1981, the *Archaeological Survey at Lake Seminole*, performed by Nancy White, an archaeologist at USF who focuses on the prehistory and early history of the Apalachicola River Valley in northwest Florida, evaluated 435 sites in the upper portion of the valley surrounding the lake (White 1981). Other surveys led by White include: one in 1985 which produced and evaluated 107 new sites in the middle and lower portions of the Apalachicola Valley (Henefield and White 1986); another in 1986 which found 201 new sites along the Chipola River (White and Trauner 1987); another in 1999 which found 11 new sites in remote areas of the Apalachicola Valley (White 1999); and one in 1995 that evaluated the impact of the 1994 flood on 67 known sites and found 24 new sites (White 1996). Also, a cultural resource survey performed by Philip Gerrell and White recovered artifacts from 32 sites in Jackson and Gadsden counties in the northern portions of the valley (Gerrell 1995). Of the theses and dissertations produced by USF students working in this valley, one was integral to my research. As part of the thesis work by Terrance Simpson, a database of all of the known sites in the valley was produced, and the sites were plotted on a map using computer software and UTM coordinates (Simpson 1996). This chapter uses the work performed by Simpson to
evaluate the distribution of Paleoindian sites in the valley, which are then compared to the data I obtained from artifact collectors in later chapters.

**Statistical Analysis**

Statistical analyses were performed to test the hypothesis that Paleoindian sites, unlike Early Archaic sites in the region, are centered on the Chipola River. The data used for these analyses comes from the Florida Master Site File (FMSF) database and from the University of South Florida archaeological database of 1039 sites gathered from over 30 years of research in northwest Florida by Dr. Nancy White. For this research the sites used from either the FMSF database or the USF database are referred to as known sites or FMSF sites. These datasets contain a number of variables; those used in this study include culture type and UTM coordinates, since those are the variables that allow for the sites to be mapped by temporal association. The sites in the database were sorted by culture type, and the 64 sites known to be Paleoindian or Early Archaic were used in these analyses. The sites were then divided and categorized by oldest known cultural period; sites identified as Paleoindian were labeled culture type 1, and sites that were identified as Early Archaic were labeled culture type 2. Sites that had both Paleoindian and Early Archaic components were placed in group 1, and sites that were only suspected to be from these periods were removed from the analysis in order to test only confirmed Paleoindian or Early Archaic sites. The northing and easting variables were used to calculate the distance from each site to both the Apalachicola and Chipola rivers. The distance was measured by hand, using USGS quad maps and a ruler with tenths of inches. The error for each distance is approximately ± 60 meters. Two sites did not have
distances to the Chipola because they were south of where the Chipola merges with the Apalachicola, 28 miles up river from the Gulf of Mexico, and some of the sites are actually submerged in the rivers so their distances to that river are considered zero.

Using statistical analysis software (SAS Assist) descriptive statistics were calculated for the distance variables by culture type, and the distances by culture type were tested for normal distribution using Shapiro-Wilk normality tests. Two Mann-Whitney U tests were then performed to test the null hypotheses that Paleoindian and Early Archaic sites were not significantly different in their distances from the Chipola and Apalachicola rivers. The significance level used in all of the tests is 0.05.

The Shapiro-Wilk test assesses whether a variable is normally distributed. The Shapiro-Wilk test rejected the null hypothesis that the distance of Paleoindian sites from the Apalachicola River was normally distributed (W=0.892539; n=21; p=0.0251). The Shapiro-Wilk test also rejected the null hypothesis that the distance of Paleoindian sites from the Chipola River was normally distributed (W=0.563889; n=21; p<0.0001). The final Shapiro-Wilk tests rejected the null hypothesis that the distance of Early Archaic sites from the Apalachicola River was normally distributed (W=0.914035; n=43; p=0.0034), as well as rejecting the null hypothesis that the distance of Early Archaic sites from the Chipola were normally distributed (W=0.866287; n=41; p=0.0002). The descriptive statistics for the distance between sites and the two rivers are given in Table 2. It is interesting to note that the means for Paleoindian sites differ more for each river than the means for Early Archaic sites; however, the mean distance from the Apalachicola River is almost the same for both cultures.
Mann-Whitney U tests were used to assess the null hypothesis that two samples are drawn from the same population; this test assumes that the samples are independent, the level of measurement is continuous, and the units of observation are discrete. The null hypothesis that Paleoindian sites and Early Archaic sites were from the same population when examined by distance to the Apalachicola River was accepted by the Mann-Whitney test ($X^2=0.0662; \, df=1; \, p=0.7969$). The null hypothesis that Paleoindian sites and Early Archaic sites were from the same population when examined by distance to the Chipola River was rejected by the Mann-Whitney test ($X^2=13.7260; \, df=1; \, p=0.0002$).

The results of the Mann-Whitney tests demonstrated that the distances of Paleoindian and Early Archaic sites from the Apalachicola River were not significantly different, but the distances of the sites from the Chipola River were significantly different. Table 2 shows the mean distance from each river for each type of site; Paleoindian sites do appear to be focused around the Chipola River while Early Archaic sites are more evenly distributed between the two rivers. Figure 6 illustrates the frequencies of the range of distances from the Apalachicola River for both site types. While the Early Archaic sites contained clusters around 3 km and around 30 km from the river, the

<table>
<thead>
<tr>
<th>Culture Type</th>
<th>Sites</th>
<th>River</th>
<th>Min. (m)</th>
<th>Max. (m)</th>
<th>Mean (m)</th>
<th>Variance</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21</td>
<td>Apalachicola</td>
<td>0</td>
<td>30720</td>
<td>20734</td>
<td>65466926</td>
<td>8091</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>Chipola</td>
<td>0</td>
<td>26880</td>
<td>3214</td>
<td>44613566</td>
<td>6679</td>
</tr>
<tr>
<td>2</td>
<td>43</td>
<td>Apalachicola</td>
<td>0</td>
<td>45300</td>
<td>19205</td>
<td>216248312</td>
<td>14705</td>
</tr>
<tr>
<td>2</td>
<td>41</td>
<td>Chipola</td>
<td>0</td>
<td>27180</td>
<td>11737</td>
<td>103778438</td>
<td>10187</td>
</tr>
</tbody>
</table>

### Table 2: SAS descriptive statistics for site distances to rivers.
Figure 6: SAS frequencies of site distances to the Apalachicola River where type 1 represents Paleoindian sites and type 2 represents Early Archaic sites.

Figure 7: SAS frequencies of site distances to the Chipola River where type 1 represents Paleoindian sites and type 2 represents Early Archaic sites.
Paleoindian sites appeared to be more normally distributed around 21 km from the Apalachicola River. Figure 7 illustrates the frequencies of the range of distances from the Chipola River for both site types. This figure demonstrates how the majority of Paleoindian sites are located on the Chipola River while the Early Archaic sites range from being on the river to being 25 km away. It is possible that some errors occurred by measuring the distances to the current location of the river rather than the location during the Paleoindian era. While the two types of sites demonstrate significantly different distances from the Chipola, the distance of Early Archaic sites to the Apalachicola might have been significant if the location of the two rivers 10,000 years ago was used. However, another explanation may be that Early Archaic populations had less need to be in close proximity to their water source possibly because of technologies such as water containers made of gourds, or they were located on smaller streams that no longer exist. The analysis demonstrates what was expected; Paleoindian populations were centered close to one river, specifically the Chipola, and the Early Archaic populations were dispersed across the landscape both on rivers and in floodplains.

**Geographic Information Systems (GIS) Analysis**

Geographic Information Systems (GIS) have been used in archaeological analysis as early as the late 1980s, and their applications continue to prove invaluable (e.g., Conolly and Lake 2006; Wheatley and Gillings 2002). Some studies are currently looking for Paleoindian and Archaic sites off the coast of the Florida panhandle; these studies are using GIS to examine where rivers and paleo-coastlines would have been (e.g., Faught and Donoghue 1997). Kvamme (1990) used GIS to compare environmental
characteristics at sites with measurements from surrounding areas to make inferences about human impact on sites, demonstrating that GIS allows for many calculations to be made with less work than a statistical analysis program. Peterman (1992) showed how GIS has many applications in the field of archaeology, including site distribution analysis and the ability to incorporate site elevations in analyses. Similarly, Bevan and Conolly (2004) looked at Greek site locations and where sites are expected to be found based on characteristics of currently known sites and the surrounding environment. Site location modeling is becoming a commonly performed practice with GIS; Brandt, Groenewoudt, and Kvamme (1992) used GIS to determine where sites are likely to be found in the Netherlands, where much of the land is now below sea level. Similarly, Cox (1992) discussed the use of GIS with remote sensing, using GIS to locate sites that are now submerged in wetland environments in England. Beyond site location modeling, GIS has also been effectively used to show the distribution of certain artifacts across landscapes providing insights and generalizations about Paleoindian life and demographic trends (Anderson and Gillam 2000). GIS has proven to be a useful tool for archaeologists in the past two decades, but its application has yet to reach its full potential. These articles only skim the surface of the possibilities of archaeological analysis with GIS, but this research utilizes methods similar to those described above.

The purpose of the GIS analysis was to check the error of hand-measured site distances to water in the statistical analyses, and to create a visual representation of Paleoindian distribution in order to generate a Paleoindian site location probability map. The data used for these analyses come from four sources. The Paleoindian and Early Archaic site data comes from the FMSF and USF databases. A total of 89 sites were
extracted from the databases and separated by culture type. Sites that had evidence of both Paleoindian and Early Archaic cultures were used twice to account for multiple cultural components at a single site. Florida County boundaries were used to delimit the study area, and were obtained from the US Census Bureau. The study area consists of Calhoun, Franklin, Gadsden, Gulf, Jackson, and Liberty counties, though some portions of these counties fall outside of the Apalachicola drainage area (Figure 2). A Digital Elevation Model (DEM) of Florida was obtained from the US Geological Survey (USGS), and a major river file for the state was obtained from the US Environmental Protection Agency (USEPA). The GIS layers for county boundaries, elevations, and major rivers were all obtained online from the sources stated above.

All of the geographic analyses carried out in this research used the GIS program ArcView 9 (ESRI, Inc.). First, the study area was clipped from the county layer. Using this clip, the DEM was also clipped to create an elevation layer colored to show elevation differences. The Apalachicola and Chipola rivers were then selected out of the river file separately, and exported as new shapefiles so that distances could be calculated to each shapefile. Finally, the site files were imported into GIS as two separate shapefiles, Paleoindian sites and Early Archaic sites. Using the DEM, elevation fields were added into the attribute tables of the site shapefiles. Using the spatial attributes of the Apalachicola and Chipola river files, a spatial join was also performed to add two distance fields to the Paleoindian and Early Archaic sites: distance to Chipola and distance to Apalachicola. Descriptive statistics were calculated for each cultural type with respect to site distance to water and site elevation (Table 3). Straight line distance maps were created around each river to illustrate how far each site was from water.
Figure 8 and Figure 9). Using the results of the descriptive statistics, buffers were created to determine where the majority of the Paleoindian sites were located in regards to elevation and distance to rivers. These buffers were then combined to create a probability map that illustrates where future sites are likely to be found (Figure 10).

Table 3: GIS descriptive statistics for site distance to rivers and site elevations.

<table>
<thead>
<tr>
<th>Unit used: meters</th>
<th>PaleoIndian Sites</th>
<th>Early Archaic Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (Chipola)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Maximum</td>
<td>25779</td>
<td>36733</td>
</tr>
<tr>
<td>Mean</td>
<td>3020</td>
<td>9899</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>6085</td>
<td>10173</td>
</tr>
<tr>
<td>Distance (Apalachicola)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>127</td>
<td>0</td>
</tr>
<tr>
<td>Maximum</td>
<td>39452</td>
<td>41244</td>
</tr>
<tr>
<td>Mean</td>
<td>19094</td>
<td>17218</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>7759</td>
<td>12601</td>
</tr>
<tr>
<td>Elevation (DEM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Maximum</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>Mean</td>
<td>21</td>
<td>27</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>9</td>
<td>14</td>
</tr>
</tbody>
</table>

The results of the distance and elevation calculations confirm what previous statistical tests have shown. The Paleoindian sites ranged from 10 meters to 25,779 meters from the Chipola with a mean distance of 3020 meters. The Early Archaic sites ranged from 1 to 36,733 meters from the Chipola with a mean of 9899 meters. The Paleoindian sites were between 127 and 39,452 meters from the Apalachicola River with a mean of 19,094 meters, while Early Archaic sites were between 0 and 41,244 meters with a mean of 17,218. The elevation range of Paleoindian sites was from 14 to 40 meters above sea level with a mean of 21 meters, whereas the range for Early Archaic
Figure 8: Visual representation of Paleoindian site distances to rivers in meters.
Figure 9: Visual representation of Early Archaic site distances to rivers in meters.
Figure 10: Geographic Paleoindian site probability map created from the site elevation and distance to the Chipola River buffers. The color gradient represents elevation change.
sites was from 0 to 60 meters above sea level with a mean of 27 meters. These numbers agree with the previous analysis, and demonstrate that the Paleoindian sites were on average significantly closer to the Chipola River and located within a narrower elevation range than Early Archaic sites.

**Probability Map**

Two buffers were created using the mean Paleoindian site elevation, and the mean Paleoindian site distance from the Chipola. Of the Paleoindian sites, 13 of 22 fell within the elevation buffer, and 18 of 22 fell within the Chipola buffer. The buffers were recalculated so that each cell in the buffer was equal to 1 and each cell outside the buffer was equal to 0. Using MapAlgebra, the buffer layers were added to create a layer with values of 2, 1, or 0 to represent a high, medium, or low probability respectively of finding Paleoindian sites. On the probability map, 12 of 22 Paleoindian sites fell within the high probability area, 19 of 22 fell within the medium and high probability areas, and the other 3 sites fell within the low probability area. Overall, 55% fell within the high probability area which covers an area of about 476 sq km, and 86% fell within the medium and high probability areas. Kvamme’s (1988) gain statistic was used to determine the utility of the prediction map. The results are displayed in Table 4, and show that the high probability area is very useful for site prediction.

The results of this analysis confirmed what previous hand measurements and statistical tests had shown. Paleoindian sites in the Apalachicola River Valley are frequently within 3 km of the Chipola River, while Early Archaic sites are more equally distributed throughout the valley between the Chipola and Apalachicola Rivers.
Table 4: Calculation of Kvamme's gain statistic for high and medium probability areas with known sites, where the scale of low to high utility is from 0 to 1.

<table>
<thead>
<tr>
<th>Zone</th>
<th>Sites</th>
<th>Total Sites</th>
<th>Area (sq km)</th>
<th>Total Area (sq km)</th>
<th>Kvamme’s Gain Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Probability</td>
<td>19</td>
<td>22</td>
<td>5294</td>
<td>10418</td>
<td>0.41</td>
</tr>
<tr>
<td>High Probability</td>
<td>12</td>
<td>22</td>
<td>476</td>
<td>10418</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Paleoindian sites are also more likely to be found in elevations lower than 20 meters, while Early Archaic site elevations are more varied. Flaws in this study might arise from inaccurate identification of points found at sites, or incomplete site records which led to small sample sizes. The data did demonstrate what was expected, and it mirrors what other studies have found in other areas (Dunbar 1991; Faught and Donoghue 1997); so, it is likely that this analysis is accurate. The following chapter examines the distribution of collectors’ Paleoindian artifacts in the valley, and Chapter Seven examines how the collector artifact distribution compares to the known sites’ distribution and whether the collectors’ artifacts fall into the high probability areas on the map. The probability map created shows areas where sites are likely to be found; however, here the map was tested with the data used to create it, while Chapter Seven tests the map with the data obtained from collectors’ artifacts.
Chapter Six: Collectors’ Paleoindian Artifacts

Collecting artifacts has been a pastime for residents of the Apalachicola River Valley for decades, and many of the collectors also consider themselves amateur archaeologists or avocational archaeologists rather than just hobby collectors. As noted in Chapter Four, Hub Chason, a collector who died in 1994, even published a book of his and other collectors’ finds in the valley entitled *Treasures of the Chipola* (Chason 1987). The book documents a number of artifacts and their locations, and speculates about their use by the first Floridians. This chapter addresses the collectors’ artifacts that I documented from the Apalachicola River Valley in northwest Florida. Though it only documents lithic tools from four collectors, it is a good portrayal of what collectors can offer to the study of Paleoindians in this river valley. The collectors documented in this chapter do not sell artifacts or loot sites to acquire their finds. All of the artifacts documented were found on private land with the permission of the land owners or found on river bottoms during the time the Isolated Finds Program was in effect or before the state laid claim to everything in Florida’s rivers. All of the collectors gave permission for their names to be included in this research, and they have all done their best to document the locations of their finds and report them to archaeologists. The chapter first explains the context of the artifacts’ documentation and the methods used to document the artifacts. Following the methods is a review of each collector’s artifacts and then a discussion of their artifacts’ distributions. The chapter concludes with a discussion of the
characteristics of the artifact distribution and the possible flaws involved in making assumptions based solely on data from these collectors.

**Documentation**

During the summer of 2006 Dr. Nancy White, her doctoral student Jeff DuVernay, and I visited northwest Florida in order to set up USF’s 2007 field school in the Apalachicola River Valley. During this trip we met with Jeff Whitfield, a collector and avocational archaeologist from Bristol, Florida, who has worked on previous excavations with Dr. White and has provided her with information about a number of sites he has found in the Apalachicola River Valley. Jeff Whitfield agreed to allow me to document some of his collection during the following summer’s field school and also introduced us to some of his friends who are also collectors. Dr. White’s 2007 field school took place between May and June in the Apalachicola River Valley. During the field season Jeff Whitfield had the students over for a barbeque and invited some collectors from the valley as well. While at the barbeque, I was able to set up meetings with other collectors to document their artifacts. Though some were skeptical about my intentions, fearing I might try to report them or take away their artifacts, I was able to meet with three of the collectors later that summer. Over a three week period I traveled throughout the valley photographing site locations, visiting collectors’ houses, and documenting their Paleoindian finds. Documentation of the artifacts included weighing and measuring each point or blade using a digital scale and calipers, and photographing each artifact with an 8 megapixel digital camera using a tripod, photo board and centimeter scale. Pinpointing the location of each find on a map and attaining UTM coordinates were also attempted,
though some of the artifacts could only be given a general region. The identification of each point type was assigned by each collector since they have far more experience dealing with the vast array of points than do most archaeologists, including myself; any discrepancies can be left to the individual, which is why all of the artifact photographs and information are included in Appendix D.

Collectors

Dan Brymer is a forestry worker who lives near the Apalachicola River outside of Marianna. He is an archaeological enthusiast and collector who has an impressive collection of artifacts from Florida, Georgia, and Texas. His collection includes eight Paleoindian points and one Transitional period point from the Apalachicola River Valley. The Paleoindian points include one fluted Clovis, three unfluted Clovis, and four Simpson points. He also has one Chipola point from the valley. The distribution of his Paleoindian and Transitional period artifacts are mapped in Figure 12.

Calvin Foran is another forestry worker from the Apalachicola River Valley who had one Paleoindian point.
that he found while clearing timber near the banks of the Apalachicola River near two springs. While it is not clear whether his point is Clovis or Simpson, it is definitely Paleoindian. Calvin was nice enough to drive me in to the location where he found the artifact nearly ten years before (Figure 13).

Terry Mercer is a retired fireman and resident of Grand Ridge who has collected artifacts for the past thirty years. Some of his artifacts are from the 1970s when he worked on a dredge-boat pumping sediment from the bottom of the Chattahoochee River in what is now Lake Seminole. He tells stories of how the dredge workers would run to the screen when the unmistakable sound of chert would clank against the metal, all wondering what artifact would come up next. Terry says mammoth and mastodon bones and teeth would be ground up and fly through the dredge pipe along with many artifacts. Since then he and his son spent their free time diving in the rivers collecting artifacts that lay on the river bottoms. The Mercers’ collection includes seven Paleoindian artifacts and seventeen Transitional period artifacts from the river valley. His Paleoindian artifacts include two Clovis, two Simpson, one Cowhouse Slough, and two unidentified points, and his Transitional artifacts include twelve Waller knives, four Chipola points, and one Lerma point. The distribution of the Mercer collection is mapped in Figure 14.

Finally, Jeff Whitfield is an avocational archaeologist, collector, and corrections officer from Bristol who has been collecting artifacts while river diving for the past twenty years. Jeff’s collection includes six Paleoindian artifacts and eleven Transitional artifacts from the Apalachicola River Valley. His Paleoindian collection includes four Cowhouse Slough points, one Beaver Lake point, and at least one Paleoindian point fragment, and his Transitional period artifacts include four Waller knives, one Marianna,
Figure 12: Distribution of artifacts collected by Dan Brymer in the valley. The color gradient represents elevation change.
Figure 13: Location of artifact collected by Calvin Foran in the valley. The color gradient represents elevation change.
Figure 14: Distribution of artifacts collected by Terry Mercer in the valley. The color gradient represents elevation change, and the dredging area on the lower Chattahoochee River includes both Paleoindian and Transitional artifacts.
Figure 15: Distribution of artifacts collected by Jeff Whitfield in the valley. The color gradient represents elevation change.
one Chipola, one Stanfield, one Hardaway/Dalton, one Big Sandy, and two Greenbriar points. Jeff’s collection also includes a number of Bolen and Dalton points that would likely be classified as Early Archaic. The distribution of his Paleoindian and Transitional period artifacts are mapped in Figure 15.

The total number of artifacts documented from the four collectors is 51, including 22 Paleoindian points and 29 Transitional period artifacts. The Paleoindian period artifacts consist of 6 Clovis points, 6 Simpson points, 5 Cowhouse Slough points, 1 Beaver Lake point, and 4 unidentified Paleoindian points. The Transitional period artifacts consist of 16 Waller knives, 6 Chipola points, 2 Greenbriar points, 1 Marianna point, 1 Stanfield point, 1 Hardaway/Dalton point, 1 Big Sandy point, and 1 Lerma point. Approximate UTM coordinates were determined for 31 of the points, while 16 of the artifacts were recovered from dredging on the lower Chattahoochee River, and 4 of the artifacts were found at unspecified locations on the Chipola River. Three of the points from these collectors were fragments and could not be accurately measured, but the remaining 32 were measured at their longest and widest points. A total of 21 points provided both UTM coordinates as well as length and width measurements, including 13 Paleoindian points and 8 Transitional points. Though the sample is small, the geographic distribution of Paleoindian points and their size variation is addressed in the next section.

**Distribution Analysis**

The distribution of Paleoindian points for all of the collectors is mapped in Figure 16. The artifacts appear to cluster on the Chipola River near the area where the banks become steeper and where many springs are found. There is also a small cluster on the
upper portion of the Apalachicola River near Lake Seminole and near where small chert outcroppings are known to be found. The Transitional period artifacts show a similar distribution to that of the Paleoindian artifacts though they are slightly more dispersed. The combined distribution (Figure 17) gives a picture of Pleistocene-Holocene transitional peoples clustering around their most valuable resources, fresh water, stone, and likely flora and fauna as well.

Artifact length and width distributions give some insight into possible divisions in Paleoindian populations in the valley. An examination of the lengths of the collectors’ Paleoindian artifacts shows a difference in the lengths by river and by location on the Chipola River specifically (Figure 18). The longest points are located on the Apalachicola River near Lake Seminole, while the smallest points are located on the Chipola River near the bottlenecked section where the banks are steepest. Similarly, the width distribution of Paleoindian points shows that the widest points are on the upper portions of the Apalachicola River and at the Florida-Alabama border on the Chipola River’s tributary, Marshall Creek (Figure 19). An examination of the length-to-width ratio for the collectors’ finds is less informative, but it does show that the points with a ratio closer to 1 lie on the Chipola River (Figure 20). Since there are only 13 Paleoindian points that provided UTM coordinates and measurements of length and width, the sample size is small; however, while the size of the points may prove insignificant with more data, the available data do show some clear differences between the populations on the two rivers.
Figure 16: Distribution of Paleoindian artifacts in the valley collected by all four collectors. The color gradient represents elevation change, and the dredging area includes artifacts from both Paleoindian and Transitional periods.
Figure 17: Distribution of Paleoindian and Transitional period artifacts in the valley collected by all four collectors. The color gradient represents elevation change, and the dredging area includes artifacts from both Paleoindian and Transitional periods.
Figure 18: Distribution of maximum point lengths in millimeters for collectors’ Paleoindian artifacts. The color gradient of the map represents elevation.
Figure 19: Distribution of maximum point widths in millimeters for collectors’ Paleoindian artifacts. The color gradient of the map represents elevation.
Figure 20: Distribution of points’ length-to-width ratio for collectors’ Paleoindian artifacts. The color gradient of the map represents elevation change.
While the data from these collectors appears to show variations in patterns of human distribution, some inaccuracies must be accounted for with this dataset. First, the artifacts documented here only represent areas where these four artifact collectors chose to collect, namely rivers near bridges and boat ramps. Also, only projectile points and blades are represented, not lithic flakes or any other possible pieces of the Paleoindian toolkit like those made of wood or bone. Since there are only four collectors used and only point and blade distributions are shown, the sample size is very small and could be deceiving. Finally, there is no context recorded with these finds, meaning that these could be Paleoindian or they might have been reused by later cultures, and they could be from a site buried underwater or they could have washed downstream from another site. In fact, they might only be instances of single artifacts dropped long ago that do not represent sites at all. With data from more collectors this could prove to be a good representation of Paleoindian distribution, but these other factors do need to be acknowledged. The following chapter examines the combined distributions of known sites and collectors’ artifacts in order to demonstrate the benefits of using collector data and attempt to draw conclusions about Paleoindian populations in the Apalachicola River Valley.
Chapter Seven: Discussion of Paleoindian Data

The distribution analysis of known Paleoindian sites in the Apalachicola Valley demonstrated that sites were in low elevations located near the Chipola River, placing the sites near the valuable resources of flora, fauna, and fresh water. Similarly, the analysis of collectors’ data showed that Paleoindian artifacts were found in the Chipola and Apalachicola rivers within comparable elevation ranges. When the information gathered from artifact collectors is combined with the known Paleoindian site data some interesting patterns arise. There appear to be two major clusters of sites in the valley that have slightly different environmental characteristics. A new factor becomes apparent for one cluster of sites along the Chipola River. And, when tested against the site location probability map, most of the data fits within the prediction model. This chapter examines these patterns, and shows how collector data is exceptionally useful when examining site distribution patterns in the Apalachicola River Valley of northwest Florida.

Site Clusters

When the known sites are plotted on a map with all of the collectors’ data, including the transitional period artifacts, two clusters of points are apparent (Figure 21). The 20 km long cluster on the Chipola River occurs at an area where the banks become steep and the river becomes narrower, creating a bottleneck effect. It was originally suspected that this bottlenecking was likely the cause of the site and artifact cluster due to
Figure 21: Combined distribution of known Paleoindian sites and collectors’ Paleoindian and Transitional period artifacts. The color gradient of the map represents elevation change, and the dredging area includes artifacts from both periods.
river processes that might wash artifact to this area where they would be caught and
buried in shallow areas or fall into deeper sinkholes, or the area was used to trap game for
hunting, as suggested by one collector. Through further examination however, this area
of bottlenecking also corresponds with a high frequency of springs (Figure 22). These
springs would have been a consistent source of fresh water at a time when water levels
were fluctuating, meaning that both humans and game animals would have likely taken
advantage of this resource. While it is possible that some of these projectile points
washed down the river, it is also very possible that Paleoindians in this area made use of
the plethora of springs for both fresh water sources and to hunt the game that gathered
around the springs. This cluster of sites, the highest frequency of Paleoindian sites in the
valley, is most likely the result of Paleoindian habitation or resource exploitation rather
than simply being the results of the river moving objects to a catching point in
topography. It is also possible that these springs represent areas where the river flowed
below the surface (Mohlenbrock 2008), making the area a prime location for a river
crossing for both animals and humans. It is important to note however that the collectors
whose artifacts were used in this study frequently collected from this bottleneck area,
biasing the data somewhat as well. The second cluster of sites that becomes apparent
when the sites and points are mapped is near Lake Seminole on the upper portion of the
Apalachicola River. Though the lake is a recent creation from the damming of the rivers,
it is the location of the confluence of the Flint and Chattahoochee rivers that create the
Apalachicola. This would have been an important area for humans during the late
Pleistocene since animal migrations moved along these rivers and the forks of rivers
would likely be communication and transportation hubs. Also, the nearest chert
Figure 22: Bottleneck area of the Chipola River where the majority of known Paleoindian sites and collector artifacts are found, and where a number of springs exist. The color gradient of the map represents elevation change.
quarrying area to the Apalachicola River Valley is located approximately 15 km north of the confluence on the Chattahoochee. While only two known sites are near the Apalachicola River, collectors’ data have produced more than 20 artifacts from the Lake Seminole region. Though some of the collectors’ artifacts were found on the Chattahoochee River, just outside of what is considered the Apalachicola River Valley, this second cluster of sites is integral in understanding Paleoindian distribution in this region. This site cluster, revealed solely from collectors’ data, differs from the cluster on the Chipola River in three ways. First, there are very few springs in the region where these artifacts were found. Second, the artifacts found near the lake are substantially larger than those found on the Chipola River (see Figures 20 and 21). Finally, the majority of artifacts found in this area are from the Transitional Period, possibly showing that a new group of Paleoindians moved into Florida from the Flint and Chattahoochee Rivers or showing that the Paleoindian groups that once lived around the Chipola River migrated eastward. Since the known chert sources are found near the Chattahoochee and Flint Rivers, it could also be that the people that composed this cluster chose to live closer to those resources rather than the fresh water springs and fauna present on the Chipola River. There are a number of possible explanations for why these two notably different clusters of sites exist; however, no matter what the reason is for the two clusters of sites and artifacts, they would not have been made apparent without the help of artifact collectors and their data.
Probability Map

When plotted on the probability map, the collectors’ artifacts confirm the known site distribution and are mainly situated in the high probability areas of the map (Figure 23). Kvamme’s gain statistic demonstrates that the combination of known sites and collector artifacts confirm the utility of the probability map. The plotting of artifacts on the map also shows that the site prediction model is accurate in demonstrating where over half of the collectors’ artifacts were found. Table 5 shows Kvamme’s gain statistic for all of the sites in this study. It is interesting to note that no sites are found in the lower portions of the valley, and few springs occur south of the bottlenecking on the Chipola River. In fact, 2/3 of the collectors artifacts were found within 3 km of a spring, and more than 2/3 of the known sites are found within 3 km of a spring. While the probability map is effective using elevation and distance to rivers as its predictors, it seems that distance to springs might be an even more useful tool. Table 6 shows the number of sites that fall into the high probability area and the number of sites that are within 3 km of a spring. Interestingly, all of the sites that are in the high probability area

Table 5: Calculation of Kvamme’s gain statistic for high and medium probability areas with known sites and collectors’ artifacts combined, where the scale of low to high utility is from 0 to 1.

<table>
<thead>
<tr>
<th>Zone</th>
<th>Sites in Zone</th>
<th>Total Sites</th>
<th>Area (sq km)</th>
<th>Total Area (sq km)</th>
<th>Kvamme's Gain Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Probability</td>
<td>48</td>
<td>55</td>
<td>5294</td>
<td>10418</td>
<td>0.42</td>
</tr>
<tr>
<td>High Probability</td>
<td>29</td>
<td>55</td>
<td>476</td>
<td>10418</td>
<td>0.91</td>
</tr>
</tbody>
</table>
Figure 23: Paleoindian site probability map, with high probability areas in red, and collectors’ data, known sites, and springs. The color gradient represents elevation change.
Table 6: The number of sites within 3 km of a spring, sites in the high probability areas, and sites in high probability areas that are within 3 km of a spring.

<table>
<thead>
<tr>
<th>Type</th>
<th>Sample</th>
<th>3 km of Spring</th>
<th>High Probability</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paleoindian (FMSF)</td>
<td>22</td>
<td>16</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Paleoindian (collector)</td>
<td>17</td>
<td>13</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Transitional (collector)</td>
<td>16</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>55</td>
<td>38</td>
<td>29</td>
<td>29</td>
</tr>
</tbody>
</table>

are also near a spring. Since there are no springs in the southern portion of the valley, using springs as another predictor in the probability map would account for the portion of the high probability area in the southern parts of the valley where no sites have been found. The map does not predict that sites would be located near Lake Seminole however, which demonstrates that probability maps are not perfect and that the cluster of sites in that area have different characteristics than those on the Chipola River. It may be that earlier Paleoindian groups valued springs, and the flora and fauna surrounding them, more than chert sources or other characteristics that made the Lake Seminole area attractive to later groups. It is also possible that the springs that were once on the upper Apalachicola River are now dried up or are now a part of Lake Seminole. Whatever the draw was for Paleoindians at the confluence of the Chattahoochee and Flint Rivers, it does not seem to be accounted for in the probability map created in this study, be it through insufficient data or through a changed landscape.

The combination of known site data and the artifacts documented from the four collectors in this study illustrates that Paleoindians in the Apalachicola River Valley, not surprisingly, found fresh water to be an integral resource to survival. While the original
probability map demonstrated that sites are likely to be found between 0 and 20 meters above sea level and within 3 km of a river, it is apparent that proximity to springs was also an important characteristic of the Paleoindian landscape. The photographs in Figures 24 and 25 are examples of the common environmental conditions surrounding many sites in this valley. Without the data from collectors, research in this valley would continue under the assumption that the Chipola River was the sole locality of Paleoindian inhabitants, and that the bottleneck of the Chipola was the determining factor in the cluster of Paleoindian sites. The few collectors utilized by this study allowed for another cluster of sites to be uncovered that has produced the largest points and blades in the valley, allowing for new perspectives and new research opportunities to arise. An analysis of chert sources and types of chert used for the artifacts found in this valley
might also provide information on these site clusters as well as other currently indistinguishable site groups. Unfortunately the lithics documented in this study, as with many of the artifacts recovered from the Chipola and Apalachicola Rivers, are so heavily coated with a thick patina from chemical processes in the rivers that chert type analyses are not possible without damaging the artifacts. With the cooperation of other collectors in the valley much more information can still be obtained regarding Paleoindian site distribution and common site characteristics. The final chapter discusses conclusions drawn about the distribution of Paleoindians in the Apalachicola River Valley, the benefits of working with artifact collectors and the public, and the need for a better dialog between archaeologists and the residents of the areas where we work.
Chapter Eight: Conclusions and Future Research

Research on Paleoindians has come a long way since the discoveries of the Clovis and Folsom sites in the 1920s, but the public has always been an integral part of stimulating interest in the subject and in the discovery of significant data. While the spotlight of Paleoindian research has shifted from focusing solely on the Clovis points to trying to determine when, where, and how humans migrated throughout the New World, public interest is still what drives the research. Without public interest there would be no popular media covering the first Americans and no museum exhibits portraying human interaction with megafauna, which in turn equates to less funding for research on Paleoindian cultures. Through shunning collectors, the public interest is also being shut out and large collections of data are being ignored. Public participation in archaeological research and public education about the value of that research is vital to the profession of archaeology. The purpose of this research was to demonstrate that artifact collectors are part of the public, they have an interest in the subject, they hold a plethora of data, and they represent part of the public opinion regarding archaeology.

Using Collectors’ Data

In the Southeast many states have acknowledged the potential significance of using collectors’ artifact data. Alabama, Arkansas, Georgia, Mississippi, South Carolina, and Tennessee have all used collectors’ data to add to their knowledge of Paleoindians in
their state (Anderson and Sassaman 1996; Broster and Norton 1996; Futato1996; Gillam 1996; Ledbetter et al. 1996; McGahey 1996). In fact, one study currently underway in Alabama, using data from collectors’ points, is attempting to show Paleoindian population divisions based on chert sourcing (Meredith 2007). As areas in the Southeast, and throughout the United States, become more developed, academic excavations will have fewer areas of untouched wilderness to excavate and CRM excavations will produce the majority of the data for archaeologists to examine. While CRM does produce usable data, their excavations are often bound by what is required by the laws and the developers, and they rarely produce the quality of data and analysis found in academic excavations. In order to supplement the data produced by CRM, archaeologists are going to need to acknowledge the public and the information that artifact collectors can contribute to our knowledge of the past.

**Paleoindian Distribution**

With data from only four artifact collectors, this research has added to the picture of Paleoindian distribution in the Apalachicola River Valley of northwest Florida. Though the sample size used was small, it now seems apparent that two distinct population groups likely existed in this river valley, one group in the general vicinity of the springs that surround and comprise the Chipola River, and another in the region surrounding the confluence of the Flint and Chattahoochee Rivers which has produced some of the largest Paleoindian and Transitional Period artifacts in the valley. While much of the data obtained confirmed the previously known distribution of the first Floridians in this area, it has also stimulated discussion of ethical considerations and
provided new research questions. Future research by USF and others can now work with the knowledge that certain regions of the valley are more likely to have Paleoindian sites and artifacts than others, and that the collectors in this valley can assist in locating sites.

**Future Research Potential**

There are three new research questions that have arisen from this study. First, why does one cluster of sites in the region occur in close proximity to springs, while another group produces much larger points but is not located near as many springs? Second, could the sourcing of chert types for the artifacts in this valley shed light on the location of different population groups, separate migrations into the state, or trade networks? Third, what would the distribution look like if more collectors were willing to share their data with archaeologists? It is possible that the springs were not only sources of water for the Paleoindians, but they were also watering holes for Pleistocene megafauna. It is also possible that the Chipola River was merely a series of springs and sinkholes in the northern portion of the panhandle that did not continue running southward above ground, but rather below the porous limestone bedrock. Also, the population group at the confluence of the Flint and Chattahoochee rivers may have been a later migration into the state, or it may have been a campsite where groups traded or followed game moving along the river systems. Chert sourcing might be able to identify more divisions among the two groups identified, or it might be able to confirm that the two clusters of sites are part of a related group that shared a similar resource. With the cooperation of more collectors in the valley, it is possible that a greater distribution of Paleoindian sites might arise. One collector in the valley, who is hesitant to share his
finds, has found Paleoindian artifacts in the southern portions of the valley where no known Paleoindian sites exist. If the policy toward artifact collectors changed, more collectors like this might be willing to make contributions of artifacts or information to help expand the archaeological knowledge of Florida’s first inhabitants.

Conclusions

This research has demonstrated how politics are heavily entwined in archaeological research. In Florida, the removal of the Isolated Finds Program has isolated amateurs and collectors from their professional colleagues, creating a divide between archaeologists, the public, and much of the data. Similar to the way that the Clovis-first models ignored the vast amounts of data being produced in South America that contested established beliefs of the earliest inhabitant of the Americas, the legislation surrounding archaeological policies in Florida is ignoring the plethora of available data produced by collectors and avocational archaeologists that challenges the ethical principles of professional archaeologists in the state. If policy does not change then data will be lost, because collectors will continue their hobby without the guidance of professionals and the divide between archaeologists and the public will continue to increase.
References Cited

Adovasio, J. M., and D. R. Pedler

Alden, Peter, Rick Cech, and Gil Nelson

American Anthropological Association (AAA)


Anderson, David G.

Anderson, David G. and Christopher Gillam

Anderson, David G., and Kenneth E. Sassaman
Avocational Archaeology & Paleontology Council, Inc. (AAPC)


Balsillie, James H., Guy H. Means, and James S. Dunbar


Bevan, Andrew, and James Conolly

Bonnichsen, Robson, and Bradley T. Lepper

Borrero, Luis Alberto

Brandt, Roel, Bert J. Groenewoudt, and Kenneth L. Kvamme

Broster, John B., and Mark R. Norton

Bryan, Alan L.

Bullen, Ripley P.

Bureau of Archaeological Research (BAR)


Chafin, L. G., J. C. P. Hancock, and G. Nelson  
2000  *Field Guide to the Rare Plants of Florida.* Florida Natural Areas Inventory, Tallahassee, FL.

Chason, H. L.  

Clark, Peter U., Richard B. Alley, Lloyd D. Keigwin, Joseph M. Licciardi, Sigfus J. Johnsen, and Huaxiao Wang  

Clark, Peter U., Richard B. Alley, and David Pollard  

Clark, Peter U., Shawn J. Marshall, Garry K. C. Clarke, Steven W. Hostetler, Joseph M. Licciardi, and James T. Teller  
2001  Freshwater Forcing Abrupt Climate Change During the Last Glaciation. *Science* 293:283-287.

Clausen, C. J., A. D. Cohen, Cesare Emiliani, J. A. Holman, and J. J. Stipp  

Conolly, James, and Mark Lake  

Cooke, Richard, and Anthony J. Ranere  

Cox, Chris  

Daniel, I. Randolph Jr.  
Daniel, I. Randolph Jr., and Michael Wisenbaker

Davis, Hester A.

Dillehay, T. D.


Donoghue, Joseph F.


Driskell, Boyce N.

Dunbar, James S.

Dunbar, James S., C. Andrew Hemmings, Pamela K. Vojnovski, S. David Webb, and William M. Stanton
Dunbar, James S., and Ben I. Waller

Dunbar, James S., and S. David Webb

Dunbar, James S., S. David Webb, and Michael Faught

Dunbar, James S., and S. David Webb

Dunbar, James S., S. David Webb, and Michael Faught

Ellis, Christopher, Albert C. Goodyear, Dan F. Morse, and Kenneth B. Tankersley

Fagan, Brian

Faught, Michael K.


Faught, Michael K., and Joseph F. Donoghue

Fieldel, Stuart J.
Florida Archaeological Council, Inc. (FAC)


Florida Anthropological Society (FAS)

Florida Statutes (F.S.)

Freeman, Andrea K. L., Edward E. Smith Jr., and Kenneth B. Tankersley

Futado, Eugene M.

Gerrell, Philip R.

Gillam, J. Christopher

Gnecco, Cristóbal, and Javier Aceituno

Goodyear, Albert C.

Groarke, Leo, and Gary Warrick

Gruhn, Ruth


Hansen, Barbara C. S.

Hardin, Kenneth W.

Haynes, C. Vance Jr.
Haynes, C. Vance Jr., and George A. Agogino

Heath, Margaret A.

Hemmings, C. Andrew, James S. Dunbar, and S. David Webb

Hemefield, Susan M., and Nancy Marie White

Hipes, D., D. R. Jackson, K. NeSmith, D. Printiss, and K. Brandt
2001 *Field Guide to the Rare Animals of Florida*. Florida Natural Areas Inventory, Tallahassee, FL.

Hollowell, Julie

Hubbell, T. H., A. M. Laessle, and J. C. Dickinson

Jackson, Lawrence J.

James, C. W.

110
Jameson, John H., Jr.  

Jones, B. Calvin, and Louis D. Tesar  

Knight, Robert L., and Donald L. Munroe  

Kurtén, Björn, and Elaine Anderson  

Kutzbach, J. E., P. J. Guetter, P. J. Behling, and R. Selin  

Kvamme, Kenneth L.  


Kwas, Mary L.  

Kwit, Charles, Mark W. Schwartz, William J. Platt, and James P. Geaghan  

Ledbetter, R. Jerald, David G. Anderson, Lisa D. O'Steen, and Daniel T. Elliott  
Livingston, R. J.  

Lynott, Mark  

Mason, Ronald J.  

McGahey, Samuel O.  

McMannamon, Francis P.  


Means, Bruce D.  

Means, Bruce D. and Alvan A. Karlin  

Meltzer, David J., Lawrence C. Todd, and Vance T. Holliday  
Meredith, Steven M.

Michie, James L.

Milanich, Jerald T.

Miotti, Laura L.

Miotti, Laura, and Mónica Salemme

Mohlenbrock, Robert H.

Morlan, Richard E.

Muhs, Daniel R., John F. Wehmiller, Kathleen R. Simmons, and Linda L. York

Overstreet, David F.
Overstreet, Robert M.

Paleoindian Database of the Americas (PIDBA)
2006 Paleoindian database at the University of Tennessee. Electronic document, [http://pidba.utk.edu/content/entiredatabase%2012%202006.xls](http://pidba.utk.edu/content/entiredatabase%2012%202006.xls), accessed December 9, 2007.

Peterman, Glen L.

Purdy, Barbara A.


Pyburn, K. Anne

Ranere, Anthony J., and Carlos E. Lopez

Register of Professional Archaeologists (RPA)

Scott, Thomas M., Guy H. Means, Rebecca P. Meegan, Ryan C. Means, Sam B. Upchurch, R. E. Copeland, James Jones, Tina Roberts, and Alan Willet

Simpson, Terrance Lane
Smith, Bruce

Smith, Claire, and Heather Burke

Smithsonian Institution

Society for American Archaeology (SAA)

Sowell, John D., and Udo Volker Nowak

Stanford, Dennis, Robson Bonnichsen, Betty Meggers, and D. Gentry Steele

Steponaitis, Vincas

Tankersley, Kenneth B.

Tesar, Louis D.

Thomas, David Hurst
Thulman, David Kelley  
2006  *A Reconstruction of Paleoindian Social Organization in North Central Florida.* Ph.D. dissertation, Department of Anthropology, Florida State University, Tallahassee.

Upchurch, Sam B., Richard N. Strom, and Mark G. Nuckels  

Waters, Michael R. and Thomas W. Stafford Jr.  

Watts, W. A. and B. C. S. Hansen  

Watts, W. A., B. C. S. Hansen, and E. C. Grimm  

Wauchope, Robert  

Webb, S. David  

Webb, S. David, Russell W. Graham, Anthony D. Barnosky, Christopher J. Bell, Richard Franz, Elizabeth A. Hadly, Ernest L. Lundelius Jr., H. Gregory McDonald, Robert A. Martin, Holmes A. Semken Jr., and David W. Steadman  

Webb, S. David, Jerald T. Milanich, Roger Alexon, and James S. Dunbar  

Webb, S. David, and Erika Simons  


Appendices
Appendix A: Letters to Officials Regarding the IFP

- Scott Mitchell to FAC members (December 15, 2003)
- Albert Goodyear to FHC Chair Judy Bense (January 15, 2004)
- Barbara Purdy to FHC Chair Judy Bense (January 20, 2004)
- Robert Austin (FAC) to Secretary of State Glenda Hood (January 26, 2004)
- Colonel Julie Jones to BAR Chief Brenda Swann (February 4, 2004)
- Harley Means to the FHC Commissioner (April 18, 2005)
- James Miller (FAC) to the FHC (May 20, 2005)
Appendix A: Letters to Officials Regarding the IFP (Continued)

From: Scott Mitchell, Collections Manager, FLMNH, Member FAC and FAS
December 15th 2003

Email to Professional Archaeologists Listserv <flarchaeologists@yahoogroups.com>

Colleagues,

I am posting a letter sent to me from Bob Knight regarding the possible cancelation of the Isolated Finds Program (IFP) by the State (see attachment). His letter presents a good argument for preserving and enhancing the IFP. Bob is an avocational archaeologist that has published in several journals including the Florida Anthropologist.

This is a tough issue. Compromises on both sides of the argument will need to be made.

As a professional archaeologist and museum collections manager, I have serious problems with illicit digging (especially on public lands) and the buying and selling of artifacts which spurs the market - and thus more illicit digging.

However, I also have serious doubts that canceling the IFP is the best solution. While more cooperation is needed on the part of the divers and avocational archaeologists, the state also needs to follow through with making portions of some rivers that contain intact submerged stratified sites off limits to divers collecting artifacts, enforcement of the program, and public outreach.

I want to point out that over 5,000 artifacts (with detailed provenience information) have been reported to the state through the IFP. I also want to stress that there is a distinct difference between responsible avocational archaeologists who share information with professionals and the individuals who engage in illicit digging and never share any data. If we as professionals lump them all together, and the IFP is canceled, then responsible individuals will be alienated and no information will be shared at all.

Finally, remember that many important private collections (often with detailed provenience information) have come into the public domain and are available for study and exhibit purposes. Significant private collections recovered from Florida rivers have been donated to the state and/or museums by the Simpson, Ohmes, Means, and Hendrix families to name just a few. Note that these collections often contain rare items we would never have seen otherwise.

Please support an extension of the Isolated Finds Program so that it can enhanced and given a second chance. If we stick our heads in the sand and cancel it, the practice of diving for artifacts will continue anyway and we will never see any of the finds or data at all.

This message in no way represents the official views of the Florida Museum of Natural History.

Scott Mitchell
Collections Manager, FLMNH
Member FAC and FAS
Appendix A: Letters to Officials Regarding the IFP (Continued)

Dr. Judy Bense, Chair  
Florida Historical Commission  
University of West Florida  
Archaeology Institute  
Pensacola, FL 32514 January 15, 2004

Dear Dr. Bense:

I write to you on the current matter of abolishing the Isolated Finds Policy (IFP) of the State of Florida. In short, I believe as a practicing professional archaeologist that the elimination of this program will result in dire consequences for the scientific understanding of Florida's archaeological heritage.

As a native born Floridian, a member of the Florida Anthropological Society since high school, a professional archaeologist who has published in the Florida Anthropologist since 1968, as a Southeastern U.S. prehistorian who has worked at a University based research institute for 30 years with continuous positive interactions with the collecting public, and as a scientist who is currently trying to photo document the older (ca. 1960-80) private underwater Paleoindian artifact collections for Florida's rivers, I can only say that a state-sponsored and regulated hobby diver collecting program is absolutely essential to the understanding of Florida's underwater archaeological heritage. In the limited case of Paleoindian projectile points alone, most of the data are in the hands of amateur artifact collectors who have the time and interest to recover such specimens from underwater. Not only are most of the important artifacts amateur collector derived, but many of the important underwater sites are too such as the famous Page/Ladson site. While I understand that no program such as this is perfect and that there are difficulties in effectively enforcing the regulations and in consisting getting accurate and reliable reports from the public, to do away with it would only make things worse as illegal collecting would continue and important scientific data now being reported would be effectively lost.

Here at the S.C. Institute of Archaeology and Anthropology, we by state law manage the underwater cultural resources for the state. We have a hobby diver program where interested members of the public can purchase a license to collect artifacts that are loose on the river bottoms. These licenses must be carried by the divers and our State Department of Natural Resource officers are empowered to check for licenses on the rivers. Those who have licenses are required to report to our Institute quarterly the nature of their finds. They are required to keep the artifacts for at least 60 days during which time we have the right to examine and record what has been found. After that the ownership of the specimens transfers to the individual. We have never confiscated any artifacts from this program. I would emphasize that over 80% of the underwater sites we have on file have been reported by our hobby divers.

To maximize the information that comes from hobby diver collecting, it is important to have a professional on the state end to review the reports and get back to the diver if there
Appendix A: Letters to Officials Regarding the IFP (Continued)

is something of archaeological interest. We have two staff members who administer our
program, issuing licenses and reviewing reports, and conducting educational workshops
and fieldschools to help train the hobbyist to provide us with more usable information.
We have found the more educational attention we give the divers, the more they
cooperate and the better the data they provide us. The fees generated from licensing can
be used to help offset the costs of maintaining such a program.

To eliminate hobby diver collecting in Florida will not get us all what we ultimately
desire: better knowledge and preservation of Florida's ancient past. The recovery of
artifacts even by the naive public which accidentally encounters a potsherd or spearpoint
can never be eliminated. Furthermore, illegal collecting will continue by the
unscrupulous and that data will certainly be hidden from professional eyes. Last, and
probably most important, the Isolated Finds Program and others like it do generate usable
scientific data that cannot be obtained otherwise without the expenditure of large sums of
public money. Even if that were desirable, one intensive, expensive professional survey
may not yield what years of collecting and reporting can provide. Furthermore, you lose
the opportunity to interact with interested private citizens who can help in other ways to
foster archaeological research and good will between government and the citizens. More
accountability by using a licensing or permitting system, and more professional attention
to the underwater collecting community are ways to increase the value of such finds.

I hope my comments are of some help in resolving the ultimate disposition of Florida's
Isolated Finds Program. If I can answer any questions concerning the scientific value of
such a program or provide additional detail on our Institute's program, please do not
hesitate to ask.

Thank you for your consideration of this letter.

Sincerely,
Albert C. Goodyear
Archaeologist
Appendix A: Letters to Officials Regarding the IFP (Continued)

January 20, 2004

Dr. Judy Bense, Chair
Florida Historical Commission
University of West Florida
Archaeology Institute
Pensacola, FL 32514

Dear Judy:

I am writing to echo the words of Dr. Albert C. Goodyear whose letter to you of January 15, 2004 outlined in excellent detail reasons to preserve the Isolated Finds Policy (IFP) of the State of Florida.

You and I are both aware that professional archaeologists would know zilch about the archaeological record without input from amateur collectors, including hobby divers. There may be weaknesses in the IFP but they can be addressed and corrected without throwing the baby out with the bath.

My very best wishes,

Barbara A. Purdy 1519 NW 25th Tr.
Professor Emerita of Anthropology Gainesville, FL 32605
University of Florida 352-373-7204
bpurdy@ufl.edu
January 26, 2004

Glenda E. Hood
Secretary of State
Florida Department of State
R.A. Gray Building
500 S. Bronough St.
Tallahassee, FL 32399-0250

RE: Isolated Finds Program

Dear Secretary Hood:

I am writing to you on behalf of the Florida Archaeological Council, Inc. (FAC), a statewide organization of professional archaeologists practicing in Florida, regarding the proposed abolishment of the state’s Isolated Finds Program (IFP). It is our position that the IFP has served a useful function in that it has documented over 5000 artifacts from Florida rivers since its inception in 1996. These artifacts might never have been seen by professional archaeologists or state officials had the program not been in effect. Moreover, by its very existence the program encourages cooperation between river divers, artifact collectors, and archaeologists. If the program is abolished, there is a real danger that private collections from both river and upland locations will no longer be available for professional documentation and analysis because of the fear that these artifacts could be confiscated. This would be a great tragedy since many significant discoveries have been made by collectors and avocational archaeologists.

By voicing our support for a state-sponsored isolated finds program, we do not mean to imply that there are no problems with the current program. We recognize that many unscrupulous individuals collect large numbers of artifacts from significant underwater sites under the guise of the Isolated Finds Program and never report their finds to the state. Law enforcement officers find it difficult to arrest and prosecute these individuals because of their incomplete understanding of what constitutes an “isolated find.” But instead of abolishing the system, the FAC recommends revising it to make the program more effective and enforceable.

To achieve this goal, the FAC recommends replacing the current program of voluntary reporting with a permit system. The permit could be for one or more years, but should not exceed a three-year limit. Applicants would pay a fee for the permit and would agree to abide by the permit requirements. These would incorporate many of the conditions of the IFP: collection of isolated artifacts only, no collecting from known archaeological sites, completion of a short report form, submittal of the form, location map, and a photograph of the find to the Bureau of Archaeological Research (BAR), and transfer of ownership rights to the individual if BAR does not request ownership under Ch. 267.061(b), F. S. If the permit holder does not live up to the conditions of the permit, the it would not be renewed. In egregious cases -- for example, where artifact “mining” under the guise of a permit has occurred -- the state would have the ability to rescind aan
Appendix A: Letters to Officials Regarding the IFP (Continued)

There are several advantages of a permit program. Unlike the current IFP, permitting provides a way for BAR to monitor and control river collecting. There would be a record of all individuals who are permitted to collect artifacts and the state would have the authority to revoke permits if individuals do not comply with the permit conditions. It would assist law enforcement officers who encounter someone collecting artifacts from a Florida river since they simply need to ask to see a permit. If no permit is produced, then the offender could be arrested under Chapter 267.13, F. S. and the artifacts confiscated.

Another important component of any permit program should be the availability of the artifact data that are reported to BAR. It is our understanding that information on isolated finds that has been collected by BAR does not always make its way to the Florida Master Site File (FMSF) office. As you know, the FMSF is the central repository for information on archaeological sites in Florida. In addition to the site files, the FMSF office also houses all archaeological reports that are submitted to the Division for compliance review, as well as many other relevant documents, papers, maps, and site information. Having the information and locations of reported artifacts on file at the FMSF would achieve the intended goal of the program, which is to preserve this valuable information and make it available to researchers and resource managers.

Implementing a permit program would require amending current law, which will take time. In the interim, we recommend that the current IFP be maintained and that efforts be made to better publicize the program to the public. BAR also should be directed to draft the specifics of a permit program and begin the process of developing suitable amendments within a reasonable time frame (e.g., one year). As part of this process, you may wish to consider establishing a committee comprised of divers, BAR representatives, Native Americans, and professional archaeologists to assist in the development of appropriate language.

A permit program may require additional funds and personnel to administer. However, using the number of IFP reports that have been submitted to BAR during the past seven years (800) as a rough guide, and assuming a modest 25% increase in the number of reports per year, it seems reasonable to assume that a permit system could be administered effectively with existing BAR personnel. This assumption is based on the fact that BAR has processed an average of 114 IFP reports per year without need for additional personnel. Administering the program could be made more efficient by modifying the Division’s web site to allow permit holders to record their finds and submit their reports to BAR electronically. If BAR has no interest in maintaining ownership of the find, an automatic response can be sent via email that thanks the permit holder for the report and transfers ownership of the artifact. What might be necessary are additional funds to support travel by BAR personnel to visit collectors who may have discovered significant finds or sites and for increased public outreach to educate divers and law enforcement officers about the program.
The FAC believes that while the current IFP is not perfect, it does result in information on artifacts and sites that otherwise would not be forthcoming. The collecting of artifact from Florida’s rivers will continue whether or not an IFP or a permit program exists. Abolishing the program entirely would limit the state’s ability to exercise some control over river collecting. It also would result in a loss of scientific information and damage the relationship between archaeologists and collectors. Finally, it would send the false message that professional archaeologists do not care about what is being found by divers in Florida’s rivers. Responsible collectors are an important resource for identifying key sites that can enhance our understanding of the past. The FAC urges the Department of State, the Florida Historical Commission, and the Bureau of Archaeological Research to develop a workable permit program that can be accepted by archaeologists and responsible river divers alike.

Thank you for your consideration of this matter.

Sincerely,

Robert J. Austin, Ph.D.
President
Xc: Judy Bense
Brenda Swann
Fred Gaske
Della Scott-Ireton
Appendix A: Letters to Officials Regarding the IFP (Continued)

Ms. Brenda Swann  
Acting Bureau Chief  
Bureau of Archaeological Research  
500 S. Bronough Street  
Tallahassee, FL 32399-0250

Dear Ms. Swann:

Thank you for allowing us to provide perspective to your ongoing project reviewing the Division of Historical Resources’ isolated finds policy. At the request of Ms. Della Scott-Ireton, we are responding to the following questions.

1. What is our agency mission?

The Florida Fish and Wildlife Conservation Commission (FWC) mission is “Managing fish and wildlife resources for their long-term, well-being and the benefit of the people.” The Division of Law Enforcement mission is “To Protect Florida’s Natural Resources and People through Law Enforcement.”

2. What is our opinion of the isolated finds policy?

It is very difficult to enforce as a policy. That policy appears to conflict with Florida Statute 267.13, which criminalizes the removal of artifacts on state-owned or -controlled lands, with no exception noted for state-submerged lands.

3. What are some of the enforcement problems with the isolated finds policy?

There are enforcement issues when only portions of a river are closed. Unless the officer observes the person collecting in a prohibited area, there is no way to tell where the artifact came from.

There is also confusion on the general public’s part as to what is and is not legal, both on land and water. You can collect on private land, but not public land; you can collect artifacts that have been disturbed on some, but not all the river bottoms, and not at all from sites on public land that have been disturbed.

These issues make it difficult to successfully prosecute cases other than excavation incidents, because the issue is so clouded. Additionally, collecting is a tradition in many...
parts of the state, and when the state’s land-management practices destroy or disturb large areas of ground, people demand to know what harm is caused by surface collecting items there. We do not have an explanation, and normally do not take enforcement action in those cases. If an artifact that has been disturbed on a river bottom has no value, why would a disturbed artifact on land be any different?

We conducted an informal poll of our law enforcement personnel around the state and received the following comments.

- Extend isolated finds policy to all lands and waters of the state that are not designated as a historical site.
- Decide whether artifacts from any disturbed site have value or not.
- Collecting isolated finds should not be a violation of law.
- Excavation or destruction of lands should be a violation.
- Do away with the reporting requirement. It is basically un-enforceable and, from what we understand, not complied with for the most part.

The FWC has incorporated archaeological violation training in our Academy for years. The officers in the field are aware and recognize this type of activity when they encounter it. We enforce excavations violations when we encounter them. We try to educate surface collectors on the law, but we seldom charge them with a violation.

Although we have been receiving requests from members of the public for dedicated patrol efforts on a year-round basis, this is just one of the many duties we perform on state lands. We do have a regular presence on public lands while performing our mission, and enforce archeological violations when we encounter them. We believe that we are having an impact, and our presence helps deter such activities.

Overall, we recommend allowing isolated find collection on all state lands, both submerged and emergent, unless the artifacts are protected by specific area regulations. This would apply only to surface collection. We believe no good comes of making criminals out of citizens who are gathering articles of “no significant archeological value.”

Please let us know if you have any further questions on this matter.

Sincerely,

[Signature]

Colonel Julie Jones
Director, Division of Law Enforcement

JJ JM/ms
cc: Mr. Ken Haddad
   Mr. Vic Heller
Appendix A: Letters to Officials Regarding the IFP (Continued)

April 18, 2005

Dear FHC Commissioner,

On April 7th, 2005 the Florida Historical Commission (FHC) convened a meeting at the R.A. Gray Building in Tallahassee and during the course of the meeting Dr. Ryan Wheeler presented to the committee a list of recommendations for the isolated finds policy (IFP). There were three recommendations made to the FHC, one of which was complete abolition of the policy. As a person who has complied with the IFP and contributed valuable information to the State I do not want to see the policy abolished. Abolition of the IFP would only divide the avocational and professional archaeological communities and in my opinion would be detrimental to professional archaeology. The State of Florida would lose a valuable resource, one that has produced some of the most valuable archaeological sites in the State. There is a rich history of avocational archaeology in Florida that no doubt started in pre-historic times when people first picked up spear points made by others. Historically, the first major contribution by avocationals was made by the Simpson family of High Springs in the 1920’s. Their passion for artifacts and fossils led them to make amazing discoveries in the Ichetucknee River and their collection was later donated to the Florida Museum of Natural History and utilized by Ripley Bullen in his typology work. Some of the first theories about Paleoindians and their potential involvement with now extinct megafaunal animals stemmed from some of the Simpson’s discoveries. With the advent and popularization of SCUBA, the river and spring realms were opened to avocational archaeologists. No other avocational archaeologist/ diver has made a larger contribution to Florida archaeology than the late Ben Waller. His discoveries of artifacts in rivers opened the door to professional archaeologists, like Ripley Bullen, to an entirely unexplored realm. Ben explored the Santa Fe, Withlacoochee, Ocklawaha and other rivers making incredible discoveries of projectile points and other tools left behind by ancient Floridians. These discoveries would likely never been brought to the attention of professionals had early amateurs like Ben not done so. The list of early contributors to Florida archaeology is a long one and includes names like: Jarl Malwin, Brad Cooley, Tom Greenhalgh, Dick Ohms, Alvin Hendrix and many others. Many of the sites that have produced valuable information about prehistoric Florida were discovered by these people. The Aucilla River Prehistory Project (ARPP), headed by S. David Webb and James Dunbar, is arguably one of the most significant paleontological and archeological investigations ever undertaken in the southeastern United States. Most of the sites investigated in the Aucilla were reported by avocational archaeologists and include: numerous sites (Don Serbosik), Page/Ladson (Buddy Page), Sloth Hole (Dick Ohms and Bruce Means), and the Ryan/Harley Site in the Wacissa River (myself and my brother). These sites would not likely have been discovered by professionals as they could never expend the amount of time and money necessary to explore the lengths of river bottoms. This is where avocationals play a most important role which is that of field archaeologist. The list of other sites discovered and
Appendix A: Letters to Officials Regarding the IFP (Continued)

reported by avocational divers is long but the point is that the IFP is a way to allow
responsible river divers to communicate their discoveries to professionals. Arguing that

IFP allows looting to occur is a flawed argument because looting is illegal. Those
unscrupulous individuals that participate in these activities will continue to do so whether
there is an IFP in place or not. By abolishing the IFP you will be punishing the people
who have diligently been complying with IFP. I encourage you to carefully weigh the
immense benefits that avocationals provide to the State, through IFP, against the loss of
important information that would surely occur if the IFP were to be abolished. Numerous
rules are already in place that deal with looting. As a professional geologist I can
confidently tell you that most of the sediments that lie on the bottoms of rivers represent
deflated sediments and rarely contain in-tact strata. The information that can be gotten
from artifact distribution maps is important, however is not nearly as valuable as
information gleaned from an upland, stratified, undisturbed site. IFP only pertains to
submerged state lands, especially rivers. There are numerous ways in which collectors,
avocational divers, interested citizens and professionals can cooperate. The IFP is one of
the most important tools that professionals have for monitoring what is being found in
Florida’s rivers. If IFP is abolished future important sites in rivers will likely never be
discovered. Many questions about Florida’s prehistory remain – answers to these
questions will certainly arise if the FHC has the foresight to continue to foster the
relationship between avocationals and professionals by not abolishing the IFP.

Many of you may have seen the letters of support for the IFP sent to the Division of
Historical Resources by some of the foremost archaeologists in the southeast. Barbara
Purdy, Al Goodyear and Scott Mitchell all realize how important it is to foster the
avocational/professional relationship. I also believe that Ryan Wheeler feels this way. If
he did not he would not have offered several alternatives for your consideration – he
would have only recommended abolition of the IFP. I would appreciate the opportunity to
address the FHC at the upcoming meeting in May and express my concern in person.
Thank you for your consideration and efforts in helping to preserve Florida’s heritage.
Continued support of the IFP is a wonderful way to continue this tradition.

Respectfully yours,
Harley Means, P. G.
Appendix A: Letters to Officials Regarding the IFP (Continued)

Florida Historical Commission

RE: Recent Discussion of the Florida Isolated Finds Program

Dear Commission Members:

The general membership of the Florida Archaeological Council, Inc. (Council) recently held its annual meeting in Gainesville, Florida. On May 13th, approximately 30 members including the Board of Directors met to discuss, among other agenda items, the organization’s position on the status of Florida’s Isolated Finds Program (Program). During the discussion, Dr. Ryan Wheeler, Chief of the Bureau of Archaeological Research, was asked to provide a brief summary of the status of the Program. He reported that after public comment at several public meetings and agency feedback during public discussions, three initial options for the future of the Program have been identified:

1) discontinue the Program
2) promulgate rules for the program in its current form
3) develop a before-the-fact permitting process.

A request was extended for other options and continues to remain open through this process.

Previous discussion in 2004 among the members of the Council prompted former Council President Dr. Robert Austin to prepare a letter on behalf of the Council to the Florida Historical Commission (Commission) in support of a scenario similar to option #3 above: the development of a permit-based system allowing for the collection of isolated archaeological specimens from Florida’s river bottoms. During the May 13, 2005 meeting, however, the Council voted to rescind this previous position due to substantial disagreement among the membership.

In a subsequent informal poll of the members in attendance, it was determined that there was no majority support for any isolated finds program. Of those who did support some sort of a program, support was equally divided for continuation of the present program and adoption of a new permit-based program. Despite considerable discussion, the Council was unable to reach consensus in support of any of the three options.

Finally, the Council adopted a motion expressing the following four points:

1. The Isolated Finds Program in its current form is not working
2. Professional archaeologists want to continue to work closely with collectors
3. None of the three alternatives are supported by the members of the Council
4. If any program is developed in the future, the Division should work with law
enforcement agencies to ensure that the program is legally and practically enforceable

In conclusion, Florida Archaeological Council wishes to convey to the Florida Historical Commission that a program such as isolated finds that grants permission to collect artifacts on state-owned lands has certain inherent problems, and that the Council cannot reach consensus in support of any of the solutions proposed to date. As the organization representing professional archaeologists in Florida, the Council is well aware of the complexities involved in any practical and viable solution, and the lack of agreement among the membership reflects these unresolved difficulties.

Sincerely,

James J. Miller, PhD, RPA
President, Florida Archaeological Council, Inc.
Appendix B: Correspondence with Archaeologists Regarding the IFP

- E-mail to 7 archaeologists in Florida (March 28, 2007)
- Response e-mail from Robert Austin (March 28, 2007)
- Response e-mail from Jerald Milanich (March 30, 2007)
- Response e-mail from Richard Estabrook (April 3, 2007)
Appendix B: Correspondence with Archaeologists Regarding the IFP (Continued)

(E-mail to Florida archaeologists, March 28, 2007)

Dear ----------,

I am a graduate student in Archaeology at USF, and I am writing a paper on the ethical issues involved when dealing with artifact collectors and documenting private collections. During my research I have come to realize that the ethical standards in a field are determined largely by the opinions and personal ethics of the practitioners. So in an attempt to go beyond the ethical guidelines of SAA, RPA, and others I would like to get the opinions of a variety of Florida archaeologists. This is where your help comes in.

If it is not too much trouble, could I get a brief response from you on the following questions:

What is your opinion on the Florida Isolated Finds Program? What were its largest benefits and criticisms, and was the program successful in your opinion?

Should collectors’ artifacts be documented, or does the attention given to them cause more harm than good? Does your answer to this question change depending on whether the artifacts were acquired legally or illegally (i.e. before, during, or after IFP, or on federal, state, or private land)?

Please do not feel restricted by these questions; feel free to add any other comments regarding these ethical issues. Also, please indicate whether you mind if I use you name with the responses. Thank you so much for your help, you time is appreciated.

Sincerely,
Dan Tyler
Appendix B: Correspondence with Archaeologists Regarding the IFP (Continued)

(E-mail response from Robert Austin, March 28, 2007)

Hi Dan,

What is your opinion on the Florida Isolated Finds Program? What were its largest benefits and criticisms, and was the program successful in your opinion?

I supported the IFP because it had the potential to provide the profession with information that would otherwise be lost. Collecting in Florida rivers is going to occur no matter what, so why not get some information? It also recognized that some collectors want to do the right thing and record their finds and make a contribution. It made it possible for the public to participate and enjoy the thrill of discovery. The criticisms are that it is illegal to collect artifacts from state land, rivers are state land, therefore, collecting from rivers is illegal. Since the IFP was implemented into Ch. 267, the question became more of ethics and principals rather than legality. Some archaeologists just think that it is unethical to collect anything, anywhere, and particularly from state lands. The other criticism is that people abused the program, saying they would document their finds when they didn't or collecting "sites" when they were only supposed to be collecting isolated finds. I'm sure that occurred, but it is going to occur anyway. So why not get some information rather than none at all?

It's difficult to say whether it was a success since there was no attempt to define what "success" is in terms of the program. Thousands of artifacts were documented by about 100 divers I believe over about 7 years.

Should collectors' artifacts be documented, or does the attention given to them cause more harm than good? Does your answer to this question change depending on whether the artifacts were acquired legally or illegally (i.e. before, during, or after IFP, or on federal, state, or private land)?

Definitely. Collectors know where the best sites are and the process of documenting collections not only provides the profession with valuable information, it enables us to enlighten and perhaps change the behaviors of some collectors. Archaeology is not just for archaeologists. There should be ways for the public to participate through collecting and documenting sites in a non-destruction way (diving, surface collecting). As for how the artifacts were obtained - honestly, most artifacts are obtained illegally. They are either collected from public lands or from private lands without permission of the landowners. I want the information and I try to let the people I am getting it from know that digging up sites is wrong and trespassing is wrong.

Hope this helps.
Bob
Appendix B: Correspondence with Archaeologists Regarding the IFP (Continued)

(E-mail response from Jerald Milanich, March 30, 2007)

> What is your opinion on the Florida Isolated Finds Program? What were its largest benefits and criticisms, and was the program successful in your opinion?

I must say that other than handing out literature about the regulation, I never ran into a single instance of its being used or followed.

> Should collectors' artifacts be documented, or does the attention given to them cause more harm than good? Does your answer to this question change depending on whether the artifacts were acquired legally or illegally (i.e. before, during, or after IFP, or on federal, state, or private land)?

The key, of course, is the meaning of "documented." If one learns of illegally obtained collections--e.g., taken from state or federal lands or from other countries with antiquity laws that prevent the export of materials--that should be reported to the proper officials/authorities.

Also, archaeologists should never authenticate (identify or evaluate) collections that may make their way to the antiquities market. On the other hand, people all over the place collect artifacts, often on an ad hoc basis. At my museum they bring them in all the time. Some want to know "what they are worth." Others simply want to know what they are. We only identify objects for educational purposes. I always require that people tell me where the object is from and how they got it.

People who dig in sites receive the usual lecture and no or little information.

I and every other archaeologist have also had the opportunity to look at large collections, sometimes obtain by digging in sites. Unfortunately in Florida such digging (on private land) is not illegal. Just as unfortunate is the fact that such collections often can tell us a great deal. Therein is the rub; when to look and when to ignore. I generally look, deriving information and sometimes forming a bond with the person that eventually allows the collection to go into public ownership. Those collections that are important are the ones with provenience data; others are pretty much worthless, since we have time-space type data. But then how about a gold bird effigy "hair decoration" from "south Florida." No provenience data, but still of great stylistic interest, etc. Those are the tough ones, and need to be dealt with on a case by case basis.

I'm active in the AIA and the archaeologists working in the Old World face these same problems all the time, even worse. I do not believe there is a single answer or protocol.

Jerald T. Milanich, PhD
Curator in Archaeology, Florida Museum of Natural History
Appendix B: Correspondence with Archaeologists Regarding the IFP (Continued)

(E-mail response from Richard Estabrook, April 3, 2007)

What is your opinion on the Florida Isolated Finds Program? What were its largest benefits and criticisms, and was the program successful in your opinion?

I personally have always been in favor of maintaining the Florida Isolated Finds Program, or in its absence, a program that maintains the goal of fostering cooperation and sharing of information between professional archaeologists and avocational archaeologists, artifact collectors, and river divers. Critics of the program cite the lack of participation by the majority of the non-professional folks (apparently only five people were regularly submitting the forms), the lack of new information (most of the finds that were reported came from known sites), and the time it took to oversee the project (Jim Dunbar at DHR spent a portion of his assigned hours to this project).

In my mind, the project was under-funded and under-supported from the start. Many of the artifact collectors felt that it was simply a way for the professionals to “keep an eye on them” and to monitor their activities. When “good” sites were found, many felt that the professionals would “take over” the site and exclude them from the excavations and take much of the credit for the find. These actions are not without precedent in Florida archaeology.

I feel that a program like the IFP, or something similar, maintains a line of communication with the artifact collectors and river divers (who, by the way, don’t see themselves as “avocational” anything!). I don’t think that additional legislation or higher penalties are going to eliminate these groups activities, but I do think that it was widened the already huge gap that has grown between professional archaeologists and these groups. I think that both groups have lost out. Professionals are not hearing about many of the sites that the amateurs have found, and there have been some pretty spectacular finds made that have gone unreported (or at least under-reported).

Should collectors’ artifacts be documented, or does the attention given to them cause more harm than good? Does your answer to this question change depending on whether the artifacts were acquired legally or illegally (i.e. before, during, or after IFP, or on federal, state, or private land)?

Two things have altered my feelings about artifact collections. The first has been the increase in the number and talents of local flintknappers, artifact re-creators, and other “experimental” prehistory types. After a few “trades” or sales, many points that were originally sold as “reproductions” have ended up in collections as legitimate prehistoric artifacts, complete with a make-believe provenance. Today, it’s really depends on who the collector is and where they got their collection from that makes the difference. Collections acquired by “surface collection” areas by the collector themselves are the least suspect (provided you can believe the source). Collections that contain materials
Appendix B: Correspondence with Archaeologists Regarding the IFP (Continued)

that have been bought or traded for are the most suspect, as they are likely to contain fakes and the provenance of the “real” artifacts are still suspect.

I don’t buy into the legal vs. illegally obtained issue. Once removed from its primary context, most artifacts loose the majority of the information they once held. They might still be useful for various metric studies, perhaps some specific kinds of usewear or use-life studies, but for the most part, they simply become pretty objects, irrespective of where they came from.
Appendix C: Site Information for Known Paleoindian Sites

This table gives the site numbers, site names, and sources for information on the artifacts of known Paleoindian sites that are in the Florida Master Site File.
Appendix C: Site Information for Known Paleoindian Sites (Continued)

<table>
<thead>
<tr>
<th>Site Number</th>
<th>Site Name</th>
<th>Report / Recorder</th>
</tr>
</thead>
<tbody>
<tr>
<td>8Ca92</td>
<td>Ring Jaw Island</td>
<td>Gerrell (Chason collection) – FMSF</td>
</tr>
<tr>
<td>8Ca93</td>
<td>Johnny Boy Landing 1</td>
<td>Gerrell (Chason collection) – FMSF</td>
</tr>
<tr>
<td>8Ca94</td>
<td>Johnny Boy Landing 2</td>
<td>Gerrell (Chason collection) – FMSF</td>
</tr>
<tr>
<td>8Ca95</td>
<td>Altha West</td>
<td>Gerrell (Chason collection) – FMSF</td>
</tr>
<tr>
<td>8Ca96</td>
<td>Chipola River North 274</td>
<td>Gerrell (Chason collection) – FMSF</td>
</tr>
<tr>
<td>8Ca97</td>
<td>Bridge 274</td>
<td>Gerrell (Chason collection) – FMSF</td>
</tr>
<tr>
<td>8Ca98</td>
<td>Look &amp; Tremble Shoals</td>
<td>Gerrell (Chason collection) – FMSF</td>
</tr>
<tr>
<td>8Ca185</td>
<td>Four Hole Pond</td>
<td>Dunbar (Chason collection) – FMSF</td>
</tr>
<tr>
<td>8Ja39</td>
<td>Harrell/Three Rivers State Park/Little Island</td>
<td>White 1981</td>
</tr>
<tr>
<td>8Ja83</td>
<td>Bellamy Bridge</td>
<td>Simpson Collection - FMNH</td>
</tr>
<tr>
<td>8Ja112</td>
<td>Blue Hole</td>
<td>Simpson Collection - FMNH</td>
</tr>
<tr>
<td>8Ja115</td>
<td>Spring Creek Mound Group</td>
<td>Simpson Collection - FMNH</td>
</tr>
<tr>
<td>8Ja124</td>
<td>Malloy Farm</td>
<td>Gerrell 1995</td>
</tr>
<tr>
<td>8Ja429</td>
<td>H L Chason</td>
<td>Gerrell (Chason collection) – FMSF</td>
</tr>
<tr>
<td>8Ja432</td>
<td>Peacock Bridge South 1</td>
<td>Gerrell (Chason collection) – FMSF</td>
</tr>
<tr>
<td>8Ja435</td>
<td>Peacock Bridge North 2</td>
<td>Gerrell (Chason collection) – FMSF</td>
</tr>
<tr>
<td>8Ja437</td>
<td>Magnolia Bridge</td>
<td>White 1999</td>
</tr>
<tr>
<td>8Ja442</td>
<td>Baggett</td>
<td>White and Trauner 1987</td>
</tr>
<tr>
<td>8Ja502</td>
<td>Bevis</td>
<td>White and Trauner 1987</td>
</tr>
<tr>
<td>8Ja513</td>
<td>For Sale</td>
<td>White and Trauner 1987</td>
</tr>
<tr>
<td>8Ja1698</td>
<td>Johnson Shoals</td>
<td>Gerrell (Chason collection) – FMSF</td>
</tr>
<tr>
<td>8Li221</td>
<td>Stuck Truck</td>
<td>Henefield and White 1986</td>
</tr>
</tbody>
</table>
Appendix D: Artifact Information from Collectors’ Artifacts

This section contains the artifact photographs, measurements, and other information from the collectors’ artifacts. The information was documented using an 8 megapixel digital camera, digital calipers, and a digital scale.
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Collector: Calvin Foran
Artifact Type: Clovis or Simpson point
Maximum Length: 126.91 mm
Maximum Width: 40.93 mm
Maximum Thickness: 9.83 mm
Weight: 52.3 g
Approximate Find Location: 3387810 N, 696632 E
Other Information:
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Collector: Dan Brymer
Artifact Type: unfluted Clovis point
Maximum Length: 85.22 mm
Maximum Width: 30.96 mm
Maximum Thickness: 7.75 mm
Weight: 21.7 g
Approximate Find Location: 3380515 N, 675697 E
Other Information: Florida Isolated Finds number BBB-01
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Dan Brymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>unfluted Clovis point</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>47.69 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>27.48 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>7.04 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>7.6 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>3388000 N, 675909 E</td>
</tr>
</tbody>
</table>

Other Information:
Collector: Dan Brymer  
Artifact Type: Simpson point  
Maximum Length: 61.98 mm  
Maximum Width: 28.98 mm  
Maximum Thickness: 6.77 mm  
Weight: 14.1 g  
Approximate Find Location: 3388000 N, 675909 E  
Other Information:

<table>
<thead>
<tr>
<th>Side A:</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Artifact Image]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Side B:</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Artifact Image]</td>
</tr>
</tbody>
</table>
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Side A:

![Artifact Image]

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Dan Brymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Simpson point fragment</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>47.30 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>34.55 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>6.84 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>12.2 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>3388000 N, 675909 E</td>
</tr>
</tbody>
</table>

Other Information:

Side B:

![Artifact Image]
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Collector: Dan Brymer
Artifact Type: Simpson point
Maximum Length: 61.71 mm
Maximum Width: 25.39 mm
Maximum Thickness: 3.83 mm
Weight: 8.1 g
Approximate Find Location: 3379818 N, 675727 E
Other Information:

Side A:

Side B:
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Dan Brymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>possible unfluted Clovis point</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>80.21 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>30.84 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>7.72 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>26.2 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>3385515 N, 675364 E</td>
</tr>
<tr>
<td>Other Information:</td>
<td></td>
</tr>
</tbody>
</table>
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Side A:

![Artifact Image]

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Dan Brymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Simpson point</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>58.24 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>23.52 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>7.19 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>8.5 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>3396333 N, 668909 E</td>
</tr>
<tr>
<td>Other Information:</td>
<td>originally dark gray</td>
</tr>
</tbody>
</table>
### Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Dan Brymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>fluted Clovis</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>39.27 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>25.51 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>8.11 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>8.5 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>3380545 N, 675697 E</td>
</tr>
<tr>
<td>Other Information:</td>
<td>Isolated find reported to the state</td>
</tr>
</tbody>
</table>
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Dan Brymer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Chipola point</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>56.62 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>27.10 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>6.46 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>8.6 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>3390576 N, 674848 E</td>
</tr>
<tr>
<td>Other Information:</td>
<td></td>
</tr>
</tbody>
</table>
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Side A:

Side B:

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Jeff Whitfield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Waller knife</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>90.55 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>27.51 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>7.70 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>19.8 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>3389576 N, 675818 E</td>
</tr>
<tr>
<td>Other Information:</td>
<td></td>
</tr>
</tbody>
</table>
## Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

### Side A:

![Artifact Image]

### Side B:

![Artifact Image]

<table>
<thead>
<tr>
<th>Collector</th>
<th>Jeff Whitfield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type</td>
<td>Waller knife</td>
</tr>
<tr>
<td>Maximum Length</td>
<td>97.29 mm</td>
</tr>
<tr>
<td>Maximum Width</td>
<td>23.41 mm</td>
</tr>
<tr>
<td>Maximum Thickness</td>
<td>8.06 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>14.3 g</td>
</tr>
<tr>
<td>Approximate Find Location</td>
<td>3384273 N, 675424 E</td>
</tr>
<tr>
<td>Other Information:</td>
<td></td>
</tr>
</tbody>
</table>
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Collector: Jeff Whitfield
Artifact Type: Waller knife
Maximum Length: 69.67 mm
Maximum Width: 22.74 mm
Maximum Thickness: 6.41 mm
Weight: 9.5 g
Approximate Find Location: 3399848 N, 672394 E
Other Information:
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Jeff Whitfield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Waller knife</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>46.64 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>29.40 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>4.18 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>7.9 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>3396545 N, 672939 E</td>
</tr>
<tr>
<td>Other Information:</td>
<td></td>
</tr>
</tbody>
</table>
### Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Jeff Whitfield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Beaver Lake point</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>65.38 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>21.10 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>4.90 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>7.7 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>somewhere on the Chipola River</td>
</tr>
<tr>
<td>Other Information:</td>
<td></td>
</tr>
</tbody>
</table>
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Jeff Whitfield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Cowhouse Slough point</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>48.62 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>29.57 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>8.00 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>12.0 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>3391682 N, 674742 E</td>
</tr>
<tr>
<td>Other Information:</td>
<td></td>
</tr>
</tbody>
</table>

Side A:

![Artifact Image](image1)

Side B:

![Artifact Image](image2)
Collector: Jeff Whitfield
Artifact Type: Cowhouse Slough point
Maximum Length: 108.10 mm
Maximum Width: 48.10 mm
Maximum Thickness: 12.26 mm
Weight: 70.3 g
Approximate Find Location: 3395242 N, 703363 E
Other Information: possible point blank or preform
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Jeff Whitfield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Cowhouse Slough point</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>61.75 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>44.38 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>11.95 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>27.3 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>3430788 N, 668000 E</td>
</tr>
<tr>
<td>Other Information:</td>
<td></td>
</tr>
</tbody>
</table>
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Side A:

![Image of Side A]

Side B:

![Image of Side B]

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Jeff Whitfield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Cowhouse Slough point</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>74.85 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>44.42 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>11.43 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>27.4 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>3430788 N, 668000 E</td>
</tr>
<tr>
<td>Other Information:</td>
<td></td>
</tr>
</tbody>
</table>
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Jeff Whitfield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Marianna point</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>37.11 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>29.35 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>6.65 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>5.1 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>3399424 N, 672333 E</td>
</tr>
<tr>
<td>Other Information:</td>
<td></td>
</tr>
</tbody>
</table>
## Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Jeff Whitfield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>possible Greenbriar point</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>96.66 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>30.97 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>9.44 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>28.4 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>3399424 N, 672333 E</td>
</tr>
<tr>
<td>Other Information:</td>
<td></td>
</tr>
</tbody>
</table>

---

Side A:

![Artifact Side A](image1)

Side B:

![Artifact Side B](image2)
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Side A:

Collector: Jeff Whitfield
Artifact Type: Chipola point
Maximum Length: 49.18 mm
Maximum Width: 27.43 mm
Maximum Thickness: 5.37 mm
Weight: 7.5 g
Approximate Find Location: 3399424 N, 672333 E
Other Information: partially translucent

Side B:
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Side A:

Collector: Jeff Whitfield
Artifact Type: Stanfield point
Maximum Length: 68.01 mm
Maximum Width: 34.34 mm
Maximum Thickness: 9.96 mm
Weight: 21.6 g
Approximate Find Location: 3394833 N, 703363 E
Other Information:

Side B:
### Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

<table>
<thead>
<tr>
<th>Side A:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector:</td>
<td>Jeff Whitfield</td>
</tr>
<tr>
<td>Artifact Type:</td>
<td>Hardaway-Dalton point</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>43.38 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>24.67 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>5.84 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>5.5 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>3389576 N, 675818 E</td>
</tr>
<tr>
<td>Other Information:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Side B:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector:</td>
<td>Jeff Whitfield</td>
</tr>
<tr>
<td>Artifact Type:</td>
<td>Hardaway-Dalton point</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>43.38 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>24.67 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>5.84 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>5.5 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>3389576 N, 675818 E</td>
</tr>
<tr>
<td>Other Information:</td>
<td></td>
</tr>
</tbody>
</table>
Side A:

Collector: Jeff Whitfield
Artifact Type: beveled Big Sandy point
Maximum Length: 61.95 mm
Maximum Width: 23.94 mm
Maximum Thickness: 7.58 mm
Weight: 9.6 g
Approximate Find Location: 3396788 N, 704606 E
Other Information:

<table>
<thead>
<tr>
<th>Collector</th>
<th>Jeff Whitfield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type</td>
<td>beveled Big Sandy point</td>
</tr>
<tr>
<td>Maximum Length</td>
<td>61.95 mm</td>
</tr>
<tr>
<td>Maximum Width</td>
<td>23.94 mm</td>
</tr>
<tr>
<td>Maximum Thickness</td>
<td>7.58 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>9.6 g</td>
</tr>
<tr>
<td>Approximate Find Location</td>
<td>3396788 N, 704606 E</td>
</tr>
<tr>
<td>Other Information</td>
<td></td>
</tr>
</tbody>
</table>
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Jeff Whitfield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>possible Greenbriar point</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>56.12 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>28.87 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>7.68 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>9.9 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>3390606 N, 700848 E</td>
</tr>
<tr>
<td>Other Information:</td>
<td></td>
</tr>
</tbody>
</table>
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Side A:

Side B:

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Jeff Whitfield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Paleoindian point fragment</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>76.63 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>40.38 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>10.69 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>43.4 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>3399424 N, 672333 E</td>
</tr>
<tr>
<td>Other Information:</td>
<td></td>
</tr>
</tbody>
</table>
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Side A:

Side B:

<table>
<thead>
<tr>
<th>Collector</th>
<th>Terry Mercer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type</td>
<td>Clovis point</td>
</tr>
<tr>
<td>Maximum Length</td>
<td>72.01 mm</td>
</tr>
<tr>
<td>Maximum Width</td>
<td>37.00 mm</td>
</tr>
<tr>
<td>Maximum Thickness</td>
<td>9.40 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>27.4 g</td>
</tr>
<tr>
<td>Approximate Find Location</td>
<td>between Butler’s and Neal’s Landings</td>
</tr>
<tr>
<td>Other Information</td>
<td>dredged from the lower Chattahoochee</td>
</tr>
</tbody>
</table>
Collector: Terry Mercer
Artifact Type: Simpson point
Maximum Length: 44.48 mm
Maximum Width: 27.04 mm
Maximum Thickness: 9.21 mm
Weight: 11.0 g
Approximate Find Location: between Butler’s and Neal’s Landings
Other Information: dredged from the lower Chattahoochee
### Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Terry Mercer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Ross County Clovis point</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>59.73 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>25.27 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>7.60 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>9.5 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>3409970 N, 654424 E</td>
</tr>
<tr>
<td>Other Information:</td>
<td>tape on side of point where mounted</td>
</tr>
</tbody>
</table>
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Side A:

Side B:

<table>
<thead>
<tr>
<th>Collector</th>
<th>Terry Mercer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type</td>
<td>Waller knife</td>
</tr>
<tr>
<td>Maximum Length</td>
<td>86.10 mm</td>
</tr>
<tr>
<td>Maximum Width</td>
<td>28.11 mm</td>
</tr>
<tr>
<td>Maximum Thickness</td>
<td>10.71 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>23.3 g</td>
</tr>
<tr>
<td>Approximate Find Location</td>
<td>3409970 N, 654424 E</td>
</tr>
<tr>
<td>Other Information</td>
<td></td>
</tr>
</tbody>
</table>
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Terry Mercer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Waller knife</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>71.16 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>29.71 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>5.40 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>11.7 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>3409970 N, 654424 E</td>
</tr>
<tr>
<td>Other Information:</td>
<td>broken stem</td>
</tr>
</tbody>
</table>
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Collector: Terry Mercer
Artifact Type: Paleoindian point fragment
Maximum Length: 38.26 mm
Maximum Width: 27.14 mm
Maximum Thickness: 8.14 mm
Weight: 7.4 g
Approximate Find Location: 3409970 N, 654424 E
Other Information:

<table>
<thead>
<tr>
<th>Side A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side B</td>
</tr>
</tbody>
</table>
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Collector: Terry Mercer
Artifact Type: Waller knife
Maximum Length: 85.42 mm
Maximum Width: 26.52 mm
Maximum Thickness: 11.03 mm
Weight: 24.1 g
Approximate Find Location: between Butler’s and Neal’s Landings
Other Information: dredged from the lower Chattahoochee
### Collector Information

<table>
<thead>
<tr>
<th>Collector</th>
<th>Terry Mercer</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Artifact Type:</strong></td>
<td>Waller knife</td>
</tr>
<tr>
<td><strong>Maximum Length:</strong></td>
<td>89.62 mm</td>
</tr>
<tr>
<td><strong>Maximum Width:</strong></td>
<td>26.43 mm</td>
</tr>
<tr>
<td><strong>Maximum Thickness:</strong></td>
<td>15.19 mm</td>
</tr>
<tr>
<td><strong>Weight:</strong></td>
<td>31.9 g</td>
</tr>
<tr>
<td><strong>Approximate Find Location:</strong></td>
<td>between Butler’s and Neal’s Landings</td>
</tr>
<tr>
<td><strong>Other Information:</strong></td>
<td>dredged from the lower Chattahoochee</td>
</tr>
</tbody>
</table>

---

**Side A:**

**Artifacts Description:**

[Image of artifact side A]

**Side B:**

[Image of artifact side B]
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Terry Mercer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>possible Waller knife</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>92.69 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>35.34 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>8.22 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>30.4 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>3395242 N, 703363 E</td>
</tr>
<tr>
<td>Other Information:</td>
<td>unifacial knife</td>
</tr>
</tbody>
</table>
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Side A:

Collector: Terry Mercer
Artifact Type: Waller knife
Maximum Length: 93.25 mm
Maximum Width: 37.08 mm
Maximum Thickness: 11.16 mm
Weight: 30.3 g
Approximate Find Location: somewhere on the Chipola River
Other Information: note purple patina typical of the Chipola

Side B:
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Terry Mercer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Waller knife</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>54.12 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>37.52 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>8.47 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>16.8 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>somewhere on the Chipola River</td>
</tr>
<tr>
<td>Other Information:</td>
<td></td>
</tr>
</tbody>
</table>
## Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Terry Mercer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>waisted Paleoindian point</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>58.44 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>25.91 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>11.19 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>15.6 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>somewhere on the Chipola River</td>
</tr>
<tr>
<td>Other Information:</td>
<td></td>
</tr>
</tbody>
</table>

### Side A:

![Artifact Image]

### Side B:

![Artifact Image]
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Collector: Terry Mercer
Artifact Type: Chipola point
Maximum Length: 55.00 mm
Maximum Width: 24.85 mm
Maximum Thickness: 6.55 mm
Weight: 6.3 g
Approximate Find Location: 3391212 N, 701045 E
Other Information:  

| Side A: |
|        |
|        |

| Side B: |
|        |
|        |
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Collector: Terry Mercer
Artifact Type: Chipola point
Maximum Length: 59.22 mm
Maximum Width: 27.47 mm
Maximum Thickness: 7.87 mm
Weight: 11.7 g
Approximate Find Location: between Butler’s and Neal’s Landings
Other Information: dredged from the lower Chattahoochee
<table>
<thead>
<tr>
<th>Collector:</th>
<th>Terry Mercer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Chipola point</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>60.33 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>25.36 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>7.38 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>8.9 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>between Butler’s and Neal’s Landings</td>
</tr>
<tr>
<td>Other Information:</td>
<td>dredged from the lower Chattahoochee</td>
</tr>
</tbody>
</table>
## Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

### Side A:

![Image of artifact side A]

### Side B:

![Image of artifact side B]

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Terry Mercer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Waller knife</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>47.72 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>23.12 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>5.56 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>5.4 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>between Butler’s and Neal’s Landings</td>
</tr>
<tr>
<td>Other Information:</td>
<td>dredged from the lower Chattahoochee</td>
</tr>
</tbody>
</table>
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Terry Mercer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Waller knife</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>59.95 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>23.95 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>4.54 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>6.2 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>between Butler’s and Neal’s Landings</td>
</tr>
<tr>
<td>Other Information:</td>
<td>dredged from the lower Chattahoochee</td>
</tr>
</tbody>
</table>

Side A:

![Image of Side A]

Side B:

![Image of Side B]
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Terry Mercer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Waller knife</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>60.57 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>25.69 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>4.72 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>7.8 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>between Butler’s and Neal’s Landings</td>
</tr>
<tr>
<td>Other Information:</td>
<td>dredged from the lower Chattahoochee</td>
</tr>
</tbody>
</table>
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Side A:

![Image of Waller knife artifact]

Collector: Terry Mercer
Artifact Type: Waller knife
Maximum Length: 68.11 mm
Maximum Width: 24.39 mm
Maximum Thickness: 8.54 mm
Weight: 11.3 g
Approximate Find Location: between Butler’s and Neal’s Landings
Other Information: dredged from the lower Chattahoochee

Side B:

![Image of Waller knife artifact]
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Side A:

Side B:

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Terry Mercer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Waller knife</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>74.15 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>27.62 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>9.23 mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>17.7 g</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>between Butler’s and Neal’s Landings</td>
</tr>
<tr>
<td>Other Information:</td>
<td>dredged from the lower Chattahoochee</td>
</tr>
</tbody>
</table>
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Collector: Terry Mercer
Artifact Type: possible Chipola point
Maximum Length: 38.39 mm
Maximum Width: 22.35 mm
Maximum Thickness: 6.49 mm
Weight: 5.4 g
Approximate Find Location: between Butler’s and Neal’s Landings
Other Information: dredged from the lower Chattahoochee
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Terry Mercer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Paleoindian point blanks or preforms</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>N/A</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>N/A</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>N/A</td>
</tr>
<tr>
<td>Weight:</td>
<td>N/A</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>3395242 N, 703363 E</td>
</tr>
</tbody>
</table>

Other Information:

Side A:

Side B:
### Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

#### Side A:

![Artifact Image]

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Terry Mercer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Lerma point</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>~110 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>~30 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>N/A</td>
</tr>
<tr>
<td>Weight:</td>
<td>N/A</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>between Butler’s and Neal’s Landings</td>
</tr>
<tr>
<td>Other Information:</td>
<td>dredged from the lower Chattahoochee note: the point was glued to a display board, so accurate measurements could not be made and a photograph of the other side could not be obtained</td>
</tr>
</tbody>
</table>

#### Side B:  N/A
Appendix D: Artifact Information from Collectors’ Artifacts (Continued)

Side A:

![Artifact Image]

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Terry Mercer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>Cowhouse Slough point</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>~110 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>~50 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>N/A</td>
</tr>
<tr>
<td>Weight:</td>
<td>N/A</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>between Butler’s and Neal’s Landings</td>
</tr>
<tr>
<td>Other Information:</td>
<td>dredged from the lower Chattahoochee note: the point was glued to a display board, so accurate measurements could not be made and a photograph of the other side could not be obtained</td>
</tr>
</tbody>
</table>

Side B: N/A
**Appendix D: Artifact Information from Collectors’ Artifacts (Continued)**

Side A:

![Artifact Image](image)

Side B: N/A

<table>
<thead>
<tr>
<th>Collector:</th>
<th>Terry Mercer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Type:</td>
<td>possible Simpson point</td>
</tr>
<tr>
<td>Maximum Length:</td>
<td>~80 mm</td>
</tr>
<tr>
<td>Maximum Width:</td>
<td>~25 mm</td>
</tr>
<tr>
<td>Maximum Thickness:</td>
<td>N/A</td>
</tr>
<tr>
<td>Weight:</td>
<td>N/A</td>
</tr>
<tr>
<td>Approximate Find Location:</td>
<td>between Butler’s and Neal’s Landings</td>
</tr>
<tr>
<td>Other Information:</td>
<td>dredged from the lower Chattahoochee board, so accurate measurements could not be made and a photograph of the other side could not be obtained</td>
</tr>
</tbody>
</table>