NCKRI Report of Investigation 2

Electrical Resistivity Survey: I&W Brine Well, Eddy County, New Mexico

www.ncrki.org
ELECTRICAL RESISTIVITY SURVEY: I&W BRINE WELL, EDDY COUNTY, NEW MEXICO

Lewis Land
George Veni

June 2011
The citation information:

Cover photo: Dr. Lewis Land examines readings on the SuperSting R8/IP™ resistivity meter in the median between two dirt roads along the south side of the Carlsbad Irrigation District South Canal. Resistivity Line INW2 extends north of this position (lower left of the photo) through the canal and across U.S. highway 285, and south through fences and roads of a mobile home park and housing subdivision. Black cable guards protect the resistivity cable where it crosses the road, and protective yellow warning bags cover each electrode. At the right edge of photo, a concrete curb holds a circular tilt-plate for measuring ground movement in the area. Photo by George Veni.

ISBN: 978-0-9795422-5-1

NCKRI Organization and Mission
NCKRI was created by the U.S. Congress in 1998 in partnership with the State of New Mexico and the City of Carlsbad. Initially an institute within the National Park Service, NCKRI is now a non-profit 501(c)(3) corporation that retains its federal, state, and city partnerships. Federal and state funding for NCKRI is administered by the New Mexico Institute of Mining and Technology (aka New Mexico Tech or NMT). Funds not produced by agreements through NMT are accepted directly by NCKRI.

NCKRI’s enabling legislation, the National Cave and Karst Research Institute Act of 1998, 16 U.S.C. §4310, identifies NCKRI’s mission as to:
1) further the science of speleology;
2) centralize and standardize speleological information;
3) foster interdisciplinary cooperation in cave and karst research programs;
4) promote public education;
5) promote national and international cooperation in protecting the environment for the benefit of cave and karst landforms; and
6) promote and develop environmentally sound and sustainable resource management practices.

NCKRI Report of Investigation Series
NCKRI uses this report series to publish the findings of its research projects. The reports are produced on a schedule whose frequency is determined by the timing of the investigations. This series is not limited to any topic or field of research, except that they involve caves and/or karst. To minimize environmental impact, few or no copies are printed. Digital copies of this and previous reports are available for free at www.nckri.org.
Table of Contents

Introduction ..4
Geologic setting ..6
Previous work ..6
Electrical resistivity methodology ...7
Results and discussion ...8
Conclusions ..13
References ..13

List of Figures

Figure 1
Map of sinkhole and brine well locations in Eddy County, New Mexico...4

Figure 2
Aerial photo of I&W brine well facility and surrounding area, Carlsbad, New Mexico.......................5

Figure 3
I&W Eugenie #1 borehole profile, showing subsurface stratigraphy..6

Figure 4
NCKRI’s Dianne Gillespie, collecting GPS location coordinates for each electrode..............................8

Figures 5-8
Resistivity Profiles: Lines INW1, INW2, INW3, and INW4...9

Figures 9-10
Resistivity Profiles: Lines INW5 and INW6...10

Figure 11
Side-by-side comparison of north-south resistivity profiles INW2, INW4, INW5, and INW6..............11

Figure 12
Map showing locations of possible subsurface cavities in the Rustler and Salado formations...........12

Figure 13
Workers from CUDD Energy Services locking down a blowout preventer on Eugenie #1.................13
ELECTRICAL RESISTIVITY SURVEY:
I&W BRINE WELL, EDDY COUNTY, NEW MEXICO

LEWIS LAND AND GEORGE VENI
NATIONAL CAVE AND KARST RESEARCH INSTITUTE

Introduction
On July 16, 2008, a brine well cavity in northern Eddy County, New Mexico abruptly collapsed. The resulting sinkhole engulfed the brine well and associated structures, and ultimately grew to ~111 m in diameter with an estimated depth of 45 m. Jim’s Water Service, an oil field service company, had been solution-mining the Salado Formation by injecting fresh water down the well and circulating it through the 86-m thick section of halite until the water reached saturation. The resulting brine was then pumped to the surface and sold as oil field drilling fluid. The brine well operated on state trust land under permit from the New Mexico Oil Conservation Division (NMOCD). The collapse became known as the JWS Sinkhole after the well operator. Less than four months later, on November 3, another brine well collapse occurred in northern Eddy County north of the small community of Loco Hills, forming a sinkhole of similar dimensions. The Loco Hills brine well was also a solution mining operation in the Salado Formation on state trust land. Figure 1 shows the location of these two collapses, the position of a seismometer that recorded the JWS Sinkhole collapse (Land and Astor, 2009; Land, 2011), and the location of the I&W brine well, which is the subject of this report.

These brine well cavity collapses in 2008 prompted NMOCD to review its regulations regarding brine well operations in the southeastern New Mexico oil fields. During this review, the I&W brine well was identified within the city limits of Carlsbad as having a similar geologic setting and pumping history. The I&W facility originally involved two wells, which conducted solution mining of the Salado Formation almost continuously since 1979. Eugenie #1 was drilled first with the intent of being a single-well brine producer. However, after a short period of poor production, Eugenie #2 was drilled about 100 m to the northwest as a freshwater injection well. The two wells were connected by hydraulic fracturing and brine was produced from Eugenie #1. After June 2000, Eugenie #2 was shut in and solution mining was conducted as a single-well operation through Eugenie #1, wherein freshwater was injected through the annulus and brine withdrawn through suspended tubing (Goodman et al., 2009).

Unlike the JWS and Loco Hills sinkholes, which are located in relatively remote areas in northern Eddy County, the I&W operation is sited in a more densely populated area within the city of Carlsbad near the BN&SF rail line and the intersection of two major highways known as the “South Y” (Figure 2). The Carlsbad Irrigation District (CID) South Canal is about 50 m south of the Eugenie #1 wellhead, and the immediate area also includes a feed store, truck stop, mobile home park, and Jehovah’s Witness church. A catastrophic collapse in this area would inflict extensive damage to individual property and civic infrastructure.

Following the collapse of the JWS Sinkhole, NMOCD ordered closure of the I&W brine well and initiated site characterization and evaluation by its consultant, RESPEC, in order to determine the feasibility of restarting the facility.

Figure 1. Map of sinkhole and brine well locations in Eddy County, New Mexico.
Consulting and Services. The City of Carlsbad and Eddy County established several committees to assess the possibility of and prepare for a potential collapse. As their first priority, they developed a monitoring, alarm, and emergency response system to prevent loss of life in the event a catastrophic collapse occurs. When OCD research funds were depleted, the City continued monitoring and studying the cavity through RESPEC and established a Technical Advisory Subcommittee, which reviewed and advised on RESPEC’s results.

Most of that research focused on an array of tilt-meters and related devices that measure shifts, subsidence, and cracks in the immediate vicinity of the brine well. The Technical Advisory Subcommittee discussed the possibility of filling the cavity to prevent collapse, but only in general terms. Until characterization of the cavity is complete, reliable selection of the best method and materials to prevent a collapse is not possible. Two attempts were made to measure the size and shape of the cavity, using seismic and sonar methods discussed below, but the sonar survey provided an incomplete result.

Figure 2. Aerial photo of I&W brine well facility and surrounding area, Carlsbad, New Mexico. Locations of Eugenie #1 and Eugenie #2 wells are shown by green stars. Electrical resistivity survey lines INW 1 through 6 are indicated by red dotted lines. Each dot represents one of the electrodes in the survey line (electrodes lacking GPS coordinates are not shown).
image of the cavity because of borehole obstacles. OCD then contracted DMT Technologies to conduct a magnetotelluric survey of the site (DMT Technologies, 2011), and the National Cave and Karst Research Institute (NCKRI) to conduct an electrical resistivity survey. These surveys were expected to map the cavity’s approximate size and shape, which is crucial to remediating the cavity while minimizing the risk of accidentally inducing a collapse. This report provides the results of the electrical resistivity survey.

Geologic setting
Sinkholes and karst fissures formed in gypsum bedrock are common features of the lower Pecos region of west Texas and southeastern New Mexico. New sinkholes form almost annually, often associated with upward artesian flow of groundwater from regional karstic aquifers that underlie evaporitic rocks at the surface (e.g., Martinez et al., 1998; Land, 2003a; Land, 2006). A significant minority of these sinkholes are of anthropogenic origin, usually associated with improperly cased abandoned oil wells or subsurface solution mining of salt beds (Land, 2011).

The City of Carlsbad is located on the Northwest Shelf of the Delaware Basin, a large hydrocarbon-producing sedimentary basin in west Texas and southeastern New Mexico (Land, 2003b). The uppermost part of the Delaware Basin section is comprised of ~1,700 m of redbeds and evaporites of upper Permian age (Lucas, 2006a; 2006b). This section includes the Salado Formation, which in the subsurface of the Delaware Basin consists of ~710 m of bedded halite and argillaceous halite. Rare amounts of potassium salts (sylvite and langbeinite) occur in the McNutt potash zone near the center of the formation (Cheeseman, 1978). Clastic material makes up less than 4% of the Salado (Kelley, 1971). Potash ore is mined from the McNutt potash zone in underground mines about 20 km east of Carlsbad. The formation is also the host rock for the Waste Isolation Pilot Plant (WIPP), a repository for transuranic radioactive waste in eastern Eddy County.

The Salado Formation thins to the north and west by erosion, halite dissolution, and onlap onto the Northwest Shelf of the basin. Because of the soluble nature of Salado rocks, the unit is very poorly exposed in an “outcrop belt” ~5 km east of the Pecos River valley. In that area the Salado is represented by 10-30 m of insoluble residue consisting of reddish-brown siltstone, occasional gypsum, and greenish and reddish clay in chaotic outcrops. In most areas the Salado outcrop is covered by a few meters to tens of meters of pediment gravels and windblown sand (Kelley, 1971; McCraw and Land, 2008).

Borehole records from Eugenie #1 indicate that the Salado Formation is 42 m thick at the I&W site. The Salado is overlain by 87 m of mudstone, gypsum and dolomite of the Rustler Formation, and 52 m of unconsolidated to partially consolidated Pecos River floodplain alluvium (Figure 3).

Previous work
A two-dimensional (2D) seismic reflection survey conducted in August 2009 identified a roughly pear-shaped cavity in plan view beneath the I&W site. The north end of the cavity was narrower than the approximately 120 m long by 90 m wide south end. Seismic interpreters with RESPEC suggested that the larger apparent diameter at the south end of the survey could be due to uncontrolled hydrofracturing from Eugenie #2 to Eugenie #1, combined with the subsequent single-well solution mining from Eugenie #1 (Goodman et al., 2009). The subsurface cavity as interpreted from the seismic survey does not extend south beyond the CID South Canal. However, this may simply reflect the fact that no seismic lines were shot south of the canal due to limitations in funds and as the first attempt to delineate the cavity without any previous knowledge of its extent.

In March 2011, DMT Technologies conducted a high-resolution magnetotelluric (MT) survey of the I&W site. The MT survey identified a subsurface void covering an area of 104,400 m² (25.8 acres) and extending south of the...
CID South Canal (DMT Technologies, 2011). A number of MT stations showed a void-like response well above the projected top-of-salt, suggesting that there had been significant roof fall, or possibly a highly brine-saturated fracture system in the roof above the top-of-void. DMT interpreters also noted the absence of a basal resistivity marker at the bottom of the salt section, suggesting that the original cavity floor may have scoured deep enough to remove the blue shale lithologic unit at the base of the Salado Formation.

Electrical resistivity methodology
On April 6-11, 2011, personnel with NCKRI and the New Mexico Bureau of Geology and Mineral Resources (NMBGMR) conducted an electrical resistivity (ER) survey of the I&W brine well site. They were assisted by personnel from RESPEC and Madron Services. ER surveys are a common and effective geophysical method for detection of subsurface voids. The basic operating principal for an ER survey involves generating a direct current, or an alternating current of very low frequency, between two metal electrodes implanted in the ground, while measuring the ground voltage between two other implanted electrodes. Given the current flow and voltage drop between the electrodes, differences in subsurface electrical resistivity can be determined and mapped. Resistivity profiles illustrate vertical and lateral variations in subsurface resistivity. The presence of water or water-saturated soil or bedrock will strongly affect the results of a resistivity survey. Air-filled caves or air-filled pore space in the vadose zone are easy to detect using the ER method, since air has near infinite resistivity, in contrast with more conductive surrounding bedrock. By contrast, subsurface voids filled with brine would be indicated by zones of very low resistivity (<15 ohm-m). A resistivity survey conducted by NCKRI in 2010 adjacent to the JWS Sinkhole clearly indicated the presence of a large brine-filled cavity ~80 m below ground level (Land, 2011).

Six 2D resistivity survey lines were deployed using an AGI SuperSting R8/IP™ resistivity meter with a 112 electrode array. Figure 2 illustrates the position of the arrays and all electrodes that were surveyed by GPS. High-precision coordinates could not be obtained for some electrode positions and are not shown in Figure 2, but their locations were approximated for data processing without significantly reducing the quality of the data; each array included a few deactivated electrodes where the arrays crossed roads and capturing data from those locations was not logistically feasible. Four of the six lines were arranged in north-south parallel order in an attempt to create a 3D image of the subsurface by merging of the 2D data. The remaining two lines were perpendicular and oblique to the four to determine if any notable cavity extends east or west of them.

The presence of urban infrastructure presented significant challenges to this study. ER is a long-recognized method for effective detection and imaging of subsurface cavities in karst and other terrains but is infrequently used in urban areas, partly because of the logistical challenge of establishing long linear transects around infrastructure and traffic. In addition, cultural interference from metal fences, buildings, railroads, and buried metal storage tanks and utility lines (water, natural gas, etc.) may capture and deviate part of the electrical current and render some resistivity measurements useless due to high errors. As such measurements are eliminated from the data set, fewer data remain for analysis, and image resolution and accuracy of interpretation decrease. ER was selected for use at the I&W well because NCKRI staff believed that, through optimizing field conditions and careful planning of transect locations to avoid known infrastructure, useful interpretable data could be collected given the exceptionally high resistivity contrast between the halite bedrock and brine in the target cavities. This conclusion followed a survey of city and county records for buried infrastructure, as well evaluating infrastructure on the ground and in aerial photographs.

The depth of investigation for an ER survey is directly related to length of the array of electrodes – the longer the array, the greater the penetration that can be obtained. For the I&W survey, electrode spacing was 6 m, and the full array length for each survey line was approximately 680 m. A standard dipole-dipole array configuration used to survey each ER line attained depths of about 130 m. To achieve a greater depth of investigation, the arrays were also coupled to an infinity electrode, creating a pole-dipole configuration that extended the depth of the survey through the entire potential vertical range of the cavity. The infinity electrode cable was deployed southeast along the right-of-way of the CID canal for a length of 2,000 m, where the infinity electrode was implanted in the ground.

Stainless steel stakes, 45-cm long, were used as electrodes. Each was covered by a bright yellow canvas bag with English, Spanish, Chinese, and symbolic warnings that no one touch them to prevent electrical shock (cover photo). The stakes were driven at least 20 cm into the ground and then soaked with about 4 L of a saline solution comprised of ~16 g of salt per liter of fresh water, to create optimal electrical connectivity with the ground. Some electrodes were implanted in areas of concrete and asphalt pavement, where 1-cm diameter by 25-cm deep holes were drilled to insert the electrodes for maximum electrical connectivity. Each electrode location was marked on the ground with a spray paint dot and identifying code to facilitate near-future reoccupation if needed.

EarthImager-2D™ software was used to process the resistivity data. The software uses a forward and inverse modeling procedure to create a synthetic data set based on measured apparent resistivity. This is an iterative process; a root-mean-square (RMS) error is calculated for each new
iteration. Noisy data points are progressively removed over the course of several iterations until the RMS error is reduced to an acceptable level. Every iteration requires the removal of a certain number of data points to attain smoother model output, and ideally the iterative process will terminate before too much useful data is filtered out. The number of data points collected in the field is a function of array configuration and number of electrodes. We employed both dipole-dipole and pole-dipole arrays for each survey line, and used EarthImager software to merge the data from the two array configurations to maximize both resolution and depth of investigation. One advantage of this procedure is that it yields several thousand data points. Thus, even when a noisy data set requires removal of a large number of data points (10-15%) during the iterative process, a substantial amount of data is still available for interpretation.

Our original proposal included development of a 3D resistivity model of the survey area, based on merging 2D data collected from the four parallel north-south lines. Ideally, line spacing for such a procedure should not exceed twice the electrode spacing of the array – in this case, 12 m. Because of the dense concentration of residential and commercial buildings and other infrastructure in parts of the survey area, our line spacing was ~25 to 50 m, so the resolution of our 3D model was too poor to yield meaningful results.

The profiles were terrain-corrected using elevation data collected with NCKRI’s survey-grade Topcon GR3™ GPS receiver (Figure 4). The EarthImager software incorporates the elevation data into the inverse modeling procedure to provide estimates of the elevation of subsurface phenomena. The accuracy and resolution of elevation/depth estimates is approximately half the electrode spacing (in this case, 3 m) in the upper half of the profile generated by EarthImager, and is equivalent to the electrode spacing (6 m) in the lower half of the section (Brad Carr, Advanced Geosciences Inc., written communication, 2011). Thus the error for depth estimates for this survey is no greater than ±6 m.

Results and Discussion

The I&W site presented significant logistical challenges in conducting an electrical resistivity survey. We deployed electrical cable across roads with high traffic volume, across the CID irrigation canal, through chain link fences, and across densely-populated areas in the mobile home park and housing development south of the canal. In spite of these and many other obstacles (cover photo), we obtained coherent results on ER profiles that in most cases attained a maximum depth of investigation of ~228 m (748 ft), extending below the base of the Salado salt beds.

Results of the six survey lines are shown in Figures 5 through 10. Stratigraphic boundaries indicated on the resistivity profiles are based on borehole records from the Eugenie #1 well (Figure 3). The most prominent features on all of the lines are distinct pods and broader zones of low resistivity (<15 ohm-m) in the depth range occupied by the Rustler Formation, and extending downward into the Salado. Four low-resistivity pods that appear more or less continuous across the survey area are indicated as zones A, B, C, and D on the north-south lines shown in Figure 11.

All geophysical methods provide non-unique solutions, and an accurate interpretation of any geophysical survey requires an understanding of the geological context combined with ground truth. In the case of the I&W survey, low-resistivity zones within the Rustler may indicate:

1. a brine-filled cavity formed by dissolution of salt beds in the Salado Formation that has stoped upward into overlying strata in the Rustler; and/or
2. highly fractured and/or brecciated zones within the Rustler that are saturated with brine.

High clay content will also produce a low-resistivity response in an ER survey, but clays rarely show resistivity values as low as those shown in the Rustler on the I&W profiles.
Figures 5-8. Resistivity profiles: Lines INW1, INW2, INW3, and INW4. Arrows show intersections with other ER lines.
Line INW4 (Figure 8) is especially informative because it was deployed within ~2 m of the Eugenie #1 wellhead, thus passing directly over the subsurface cavity that had been excavated during solution mining operations. Pump tests have confirmed that the cavity is filled with brine, providing ground truth to support the geophysical interpretation. The position of the wellhead is shown at about 411 m on the north-south profile. A well-defined pod of very low resistivity occupies the entire Rustler section below the wellhead and extends downward into the Salado. The base of the Salado and underlying Castile gypsum are poorly resolved on most of the profiles because of attenuation of the resistivity signal at greater depths, but appear as an area of high resistivity beneath the wellhead on Line INW4. A vertical zone of low resistivity that links the Rustler low-resistivity pod to the surface is probably caused by conductive material in the well casing. The increase in resistivity near the base of the Salado section may indicate the presence of mudstone and dolomite breccia deposited at the bottom of the cavity due to upward stoping into the Rustler. The July 2010 sonar survey of Eugenie #1 mapped a cavity roughly 45 m in diameter by at least 8 m high (Van Sambeek, 2010a), which correlates closely to the diameter of the low resistivity area in the Salado below the wellhead in Line INW4. Probing of the floor for additional cavities to survey by sonar revealed material consistent with breccia; the ceiling of the cavity was not defined.

The distribution of low-resistivity intervals that may represent brine-filled cavities is shown outlined in yellow in Figure 12. Zone A extends from Eugenie #1 to Eugenie #2 and further north beneath the intersection of highways 285 and 62-180. This elongate low-resistivity interval probably represents a solution cavity within the Salado that formed along the fracture system between Eugenie #1 and #2, created during solution mining operations. The extension of Zone A northwest of Eugenie #2 suggests that the hydrofracturing was not confined to the area between the two wells. Zone B is another well-defined pod of low resistivity visible on the north ends of lines INW2 and INW4 that extends beneath highway 285. Zone C, underlying the mobile home park south of the canal, is present on all four north-south lines and east-west Line INW1, and almost links to Zone A on Line INW6. Zone D is clearly defined only at the south end of Line INW4. Zones A through D all appear connected to varying degrees by conductive intervals of somewhat higher resistivity that may represent brine-saturated fractured sections within the Rustler. Zone E is represented by a distinct pod of low resistivity at the east end of Line INW1, and by a much broader more resistive interval on Line INW3. The relation of Zone E to the low-resistivity zones beneath the I&W site is unclear, but it may represent a slug or stream of brine moving down the hydraulic gradient from the I&W well site through a more permeable section of the Rustler. The low resistivity intervals in general do not extend

Figures 9-10. Resistivity profiles: Lines INW5 and INW6. Arrows show intersections with other ER lines.
Figure 11. Side-by-side comparison of north-south resistivity profile lines INW2, INW4, INW5, and INW6.
upward beyond the top of the Rustler Formation, suggesting that the clay-rich basal horizon of the alluvium forms an aquitard.

Pumping records from Eugenie #1 and Eugenie #2 and volumetric calculations suggest that the brine well operation excavated roughly 170,000 m3 (6 million cubic feet) of salt from the Salado Formation. Given the Salado’s measured thickness of 42 m, if all of the low resistivity intervals were caused by cavities in the Salado, Zone A would represent ~900,000 m3, Zone B would represent 270,000 m3, and Zones C and D combined would represent 830,000 m3 of void space, for a collective total of approximately 2 million m3. It thus appears likely that a significant percentage of the low resistivity zones represent highly fractured or brecciated sections of the Rustler Formation that are saturated with brine, rather than open void space. However, some of these brine-saturated fractured intervals may have resulted from

Figure 12. Map showing locations of possible subsurface cavities in the Rustler and Salado formations. Solid red lines indicate areas of lowest resistivity. Much of the area outlined in solid yellow is probably underlain by a significant cavity. Areas delimited by dashed yellow lines probably have lesser degree of cavity development and/or brine-saturated breccia. Numbers indicate resistivity lines referred to in the text. Letters correspond to low-resistivity zones indicated in Figure 11.
sagging and collapse into underlying cavities and conduits.

One unexpected result of this investigation is that the brine-filled cavity cannot be readily distinguished from brine-saturated sections of the Rustler Formation. Given the order of magnitude difference between the estimated volume of the cavity and the low-resistivity zones, it is most likely that the greatest volumetric percentage of the brine well cavity is in Zone A. This interpretation is consistent with the results of the 2D seismic study (Goodman et al., 2009) and magneto-telluric survey (DMT Technologies, 2011). However, the potential for smaller yet possibly collapse- or subsidence-prone cavities cannot be ruled out in the other areas (Figure 12). A microgravity survey, in concert with the results of this study, may be able to distinguish between brine-filled cavities and brine-saturated Rustler.

The results of this study indicate that the cavity recorded at Eugenie #1 extends up into the Rustler Formation. The height of the cavity cannot be precisely resolved with the available data, which show very low resistivity values up to the contact with the overlying alluvium. Whatever Rustler is present is almost certainly highly fractured and brine saturated based on resistivity values. This interpretation is supported by brine free-flowing from Eugenie #1 and instant accelerated movement recorded by the tiltmeters when the well was uncapped. This response has been interpreted as brine in the cavity buoyantly supporting much of the weight of a highly fractured ceiling that sags and forces water out of the well when it is uncapped (Van Sambeek, 2010b) (Figure 13).

Conclusions
Electrical resistivity surveys over the site of the I&W brine well operation in south Carlsbad, New Mexico, indicate that the area is underlain by extensive low resistivity zones that represent either open cavities in the Rustler and/or Salado formations caused by solution mining, and/or highly fractured and brine-saturated intervals within the Rustler Formation that may have been caused by sagging and collapse into underlying cavities. These low resistivity zones extend to the north beneath the intersection of highways 285 and 62-180, and south beneath residential areas south of the CID South Canal. The data suggest that solution mining of the Salado Formation has caused significant upward stoping into overlying Rustler strata.

References

Van Sambeek, Leo. 2010a. PowerPoint presentation to the Technical Advisory Subcommittee: RESPEC, 4 August.

Van Sambeek, Leo. 2010b. PowerPoint presentation to the Technical Advisory Subcommittee: RESPEC, 6 October.